1HW1

THE FADR-DNA COMPLEX: TRANSCRIPTIONAL CONTROL OF FATTY ACID METABOLISM IN ESCHERICHIA COLI


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.198 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli.

Xu, Y.Heath, R.J.Li, Z.Rock, C.O.White, S.W.

(2001) J Biol Chem 276: 17373-17379

  • DOI: 10.1074/jbc.M100195200
  • Primary Citation of Related Structures:  
    1HW2, 1HW1

  • PubMed Abstract: 
  • In Escherichia coli, the expression of fatty acid metabolic genes is controlled by the transcription factor, FadR. The affinity of FadR for DNA is controlled by long chain acyl-CoA molecules, which bind to the protein and modulate gene expression. The crystal structure of FadR reveals a two domain dimeric molecule where the N-terminal domains bind DNA, and the C-terminal domains bind acyl-CoA ...

    In Escherichia coli, the expression of fatty acid metabolic genes is controlled by the transcription factor, FadR. The affinity of FadR for DNA is controlled by long chain acyl-CoA molecules, which bind to the protein and modulate gene expression. The crystal structure of FadR reveals a two domain dimeric molecule where the N-terminal domains bind DNA, and the C-terminal domains bind acyl-CoA. The DNA binding domain has a winged-helix motif, and the C-terminal domain resembles the sensor domain of the Tet repressor. The FadR.DNA complex reveals how the protein interacts with DNA and specifically recognizes a palindromic sequence. Structural and functional similarities to the Tet repressor and the BmrR transcription factors suggest how the binding of the acyl-CoA effector molecule to the C-terminal domain may affect the DNA binding affinity of the N-terminal domain. We suggest that the binding of acyl-CoA disrupts a buried network of charged and polar residues in the C-terminal domain, and the resulting conformational change is transmitted to the N-terminal domain via a domain-spanning alpha-helix.


    Organizational Affiliation

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
FATTY ACID METABOLISM REGULATOR PROTEINA, B239Escherichia coliMutation(s): 0 
Gene Names: fadR
UniProt
Find proteins for P0A8V6 (Escherichia coli (strain K12))
Explore P0A8V6 
Go to UniProtKB:  P0A8V6
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.216 
  • R-Value Work: 0.198 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 59.346α = 90
b = 86.996β = 120.18
c = 59.128γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-01-24
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance