1GO2

Structure of Ferredoxin-NADP+ Reductase with Lys 72 replaced by Glu (K72E)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.220 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural Analysis of Interactions for Complex Formation between Ferredoxin-Nadp+ Reductase and its Protein Partners

Mayoral, T.Martinez-Julvez, M.Perez-Dorado, I.Sanz-Aparicio, J.Gomez-Moreno, C.Medina, M.Hermoso, J.A.

(2005) Proteins 59: 592

  • DOI: 10.1002/prot.20450
  • Primary Citation of Related Structures:  
    1E64, 1E63, 1E62, 1QGY, 1GO2

  • PubMed Abstract: 
  • The three-dimensional structures of K72E, K75R, K75S, K75Q, and K75E Anabaena Ferredoxin-NADP+ reductase (FNR) mutants have been solved, and particular structural details of these mutants have been used to assess the role played by residues 72 and 75 ...

    The three-dimensional structures of K72E, K75R, K75S, K75Q, and K75E Anabaena Ferredoxin-NADP+ reductase (FNR) mutants have been solved, and particular structural details of these mutants have been used to assess the role played by residues 72 and 75 in optimal complex formation and electron transfer (ET) between FNR and its protein redox partners Ferredoxin (Fd) and Flavodoxin (Fld). Additionally, because there is no structural information available on the interaction between FNR and Fld, a model for the FNR:Fld complex has also been produced based on the previously reported crystal structures and on that of the rat Cytochrome P450 reductase (CPR), onto which FNR and Fld have been structurally aligned, and those reported for the Anabaena and maize FNR:Fd complexes. The model suggests putative electrostatic and hydrophobic interactions between residues on the FNR and Fld surfaces at the complex interface and provides an adequate orientation and distance between the FAD and FMN redox centers for efficient ET without the presence of any other molecule as electron carrier. Thus, the models now available for the FNR:Fd and FNR:Fld interactions and the structures presented here for the mutants at K72 and K75 in Anabaena FNR have been evaluated in light of previous biochemical data. These structures confirm the key participation of residue K75 and K72 in complex formation with both Fd and Fld. The drastic effect in FNR activity produced by replacement of K75 by Glu in the K75E FNR variant is explained not only by the observed changes in the charge distribution on the surface of the K75E FNR mutant, but also by the formation of a salt bridge interaction between E75 and K72 that simultaneously "neutralizes" two essential positive charged side chains for Fld/Fd recognition.


    Related Citations: 
    • X-Ray Structure of the Ferredoxin:Nadp+ Reductase from the Cyanobacterium Anabanena Pcc 7119 at 1.8A Resolution, and Crystallographic Studies of Nadp Binding at 2.25A Resolution
      Serre, L., Vellieux, F.M.D., Medina, M., Gomez-Moreno, C., Fontecilla, J.C., Frey, M.
      (1996) J Mol Biol 263: 20

    Organizational Affiliation

    Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Química-Física Rocasolano, C.S.I.C. Serrano 119, 28006-Madrid, Spain.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
FERREDOXIN--NADP+ REDUCTASEA304Nostoc sp. PCC 7119Mutation(s): 1 
Gene Names: petH
EC: 1.18.1.2
Find proteins for P21890 (Nostoc sp. (strain ATCC 29151 / PCC 7119))
Explore P21890 
Go to UniProtKB:  P21890
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download CCD File 
A
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
 Ligand Interaction
SO4
Query on SO4

Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.220 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 86.64α = 90
b = 86.64β = 90
c = 96.27γ = 120
Software Package:
Software NamePurpose
X-PLORrefinement
MOSFLMdata reduction
SCALAdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-10-17
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.2: 2018-06-13
    Changes: Data collection
  • Version 1.3: 2019-05-22
    Changes: Data collection, Refinement description