1G9J

X-TAL STRUCTURE OF THE MUTANT E44Q OF THE CELLULASE CEL48F IN COMPLEX WITH A THIOOLIGOSACCHARIDE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.182 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action

Parsiegla, G.Reverbel, C.Tardif, C.Driguez, H.Haser, R.

(2008) J.Mol.Biol. 375: 499-510

  • DOI: 10.1016/j.jmb.2007.10.039
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • An efficient breakdown of lignocellulosic biomass is a prerequisite for the production of second-generation biofuels. Cellulases are key enzymes in this process. We crystallized complexes between hemithio-cello-deca and dodecaoses and the inactive mu ...

    An efficient breakdown of lignocellulosic biomass is a prerequisite for the production of second-generation biofuels. Cellulases are key enzymes in this process. We crystallized complexes between hemithio-cello-deca and dodecaoses and the inactive mutants E44Q and E55Q of the endo-processive cellulase Cel48F, one of the most abundant cellulases in cellulosomes from Clostridium cellulolyticum, to elucidate its processive mechanism. In both complexes, the cellooligosaccharides occupy similar positions in the tunnel part of the active site but are more or less buried into the cleft, which hosts the active site. In the E44Q complex, it proceeds along the upper part of the cavity, while it occupies in the E55Q complex the same productive binding subsites in the lower part of the cavity that have previously been reported in Cel48F/cellooligosaccharide complexes. In both cases, the sugar moieties are stabilized by stacking interactions with aromatic side chains and H bonds. The upper pathway is gated by Tyr403, which blocks its access in the E55Q complex and offers a new stacking interaction in the E44Q complex. The new structural data give rise to the hypothesis of a two-step mechanism in which processive action and chain disruption occupy different subsites at the end of their trajectory. In the first part of the mechanism, the chain may smoothly slide up to the leaving group site along the upper pathway, while in the second part, the chain is cleaved in the already described productive binding position located in the lower pathway. The solved native structure of Cel48F without any bound sugar in the active site confirms the two side-chain orientations of the proton donor Glu55 as observed in the complex structures.


    Related Citations: 
    • Crystal structures of the cellulase Cel48F in complex with inhibitors and substrates give insights into its processive action.
      Parsiegla, G.,Reverbel-Leroy, C.,Tardif, C.,Belaich, J.P.,Driguez, H.,Haser, R.
      (2000) Biochemistry 39: 11238
    • The crystal structure of the processive endocellulase CelF of Clostridium cellullolyticum in complex with a thiooligosaccharide inhibitor at 2.0 resolution.
      Parsiegla, G.,Juy, M.,Reverbel-Leroy, C.,Tardif, C.,Belaich, J.P.,Driguez, H.,Haser, R.
      (1998) Embo J. 17: 5551


    Organizational Affiliation

    Laboratoire de l'Architecture et Fonction des Macromolecules Biologiques, UMR 6098 CNRS and University of Aix-Marseille, Parc Scientifique et Technologique de Luminy, 13288 Marseille Cedex 09, France. goetz.parsiegla@afmb.univ-mrs.fr




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
CELLULASE CEL48F
A
629Clostridium cellulolyticum (strain ATCC 35319 / DSM 5812 / JCM 6584 / H10)Mutation(s): 1 
Gene Names: celCCF
EC: 3.2.1.4
Find proteins for P37698 (Clostridium cellulolyticum (strain ATCC 35319 / DSM 5812 / JCM 6584 / H10))
Go to UniProtKB:  P37698
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
BGC
Query on BGC

Download SDF File 
Download CCD File 
A
BETA-D-GLUCOSE
C6 H12 O6
WQZGKKKJIJFFOK-VFUOTHLCSA-N
 Ligand Interaction
SGC
Query on SGC

Download SDF File 
Download CCD File 
A
4-DEOXY-4-THIO-BETA-D-GLUCOPYRANOSE
C6 H12 O5 S
KGSURTOFVLAWDC-QZABAPFNSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.182 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 61.480α = 90.00
b = 84.720β = 90.00
c = 121.810γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALAdata scaling
CCP4data scaling
CNSphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-06-24
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance