1FBK

CRYSTAL STRUCTURE OF CYTOPLASMICALLY OPEN CONFORMATION OF BACTERIORHODOPSIN


Experimental Data Snapshot

  • Method: ELECTRON CRYSTALLOGRAPHY
  • Resolution: 3.20 Å
  • R-Value Free: 0.321 
  • R-Value Work: 0.272 

wwPDB Validation 3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Molecular mechanism of vectorial proton translocation by bacteriorhodopsin.

Subramaniam, S.Henderson, R.

(2000) Nature 406: 653-657

  • DOI: 10.1038/35020614
  • Primary Citation of Related Structures:  
    1FBB, 1FBK

  • PubMed Abstract: 
  • Bacteriorhodopsin, a membrane protein with a relative molecular mass of 27,000, is a light driven pump which transports protons across the cell membrane of the halophilic organism Halobacterium salinarum. The chromophore retinal is covalently attache ...

    Bacteriorhodopsin, a membrane protein with a relative molecular mass of 27,000, is a light driven pump which transports protons across the cell membrane of the halophilic organism Halobacterium salinarum. The chromophore retinal is covalently attached to the protein via a protonated Schiff base. Upon illumination, retinal is isomerized. The Schiff base then releases a proton to the extracellular medium, and is subsequently reprotonated from the cytoplasm. An atomic model for bacteriorhodopsin was first determined by Henderson et al, and has been confirmed and extended by work in a number of laboratories in the last few years. Here we present an atomic model for structural changes involved in the vectorial, light-driven transport of protons by bacteriorhodopsin. A 'switch' mechanism ensures the vectorial nature of pumping. First, retinal unbends, triggered by loss of the Schiff base proton, and second, a protein conformational change occurs. This conformational change, which we have determined by electron crystallography at atomic (3.2 A in-plane and 3.6 A vertical) resolution, is largely localized to helices F and G, and provides an 'opening' of the protein to protons on the cytoplasmic side of the membrane.


    Organizational Affiliation

    MRC Laboratory of Molecular Biology, Cambridge, UK. ss1@nih.gov



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
BACTERIORHODOPSINA248Halobacterium salinarumMutation(s): 3 
Find proteins for P02945 (Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1))
Explore P02945 
Go to UniProtKB:  P02945
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
RET
Query on RET

Download CCD File 
A
RETINAL
C20 H28 O
NCYCYZXNIZJOKI-OVSJKPMPSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON CRYSTALLOGRAPHY
  • Resolution: 3.20 Å
  • R-Value Free: 0.321 
  • R-Value Work: 0.272 
  • Space Group: P 3
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 62.45α = 90
b = 62.45β = 90
c = 100.9γ = 120
Software Package:
Software NamePurpose
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2000-08-09
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Data collection, Refinement description
  • Version 1.4: 2018-01-31
    Changes: Experimental preparation