1EZ3

CRYSTAL STRUCTURE OF THE NEURONAL T-SNARE SYNTAXIN-1A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.231 
  • R-Value Observed: 0.233 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural analysis of the neuronal SNARE protein syntaxin-1A.

Lerman, J.C.Robblee, J.Fairman, R.Hughson, F.M.

(2000) Biochemistry 39: 8470-8479

  • DOI: 10.1021/bi0003994
  • Primary Citation of Related Structures:  
    1EZ3

  • PubMed Abstract: 
  • Intracellular trafficking depends on the docking and fusion of transport vesicles with cellular membranes. Central to docking and fusion is the pairing of SNARE proteins (soluble NSF attachment protein receptors) associated with the vesicle and target membranes (v- and t-SNAREs, respectively) ...

    Intracellular trafficking depends on the docking and fusion of transport vesicles with cellular membranes. Central to docking and fusion is the pairing of SNARE proteins (soluble NSF attachment protein receptors) associated with the vesicle and target membranes (v- and t-SNAREs, respectively). Here, the X-ray structure of an N-terminal conserved domain of the neuronal t-SNARE syntaxin-1A was determined to a resolution of 1.9 A using multiwavelength anomalous diffraction. This X-ray structure, which is in general agreement with an NMR structure of a similar fragment, provides new insight into the interaction surface between the N-terminal domain and the remainder of the protein. In vitro characterization of the intact cytoplasmic domain of syntaxin revealed that it forms dimers, and probably tetramers, at low micromolar concentrations, with concomitant structural changes that can be detected by limited proteolysis. These observations suggest that the promiscuity characteristic of pairing between v-SNAREs and t-SNAREs extends to the formation of homo-oligomeric t-SNARE complexes as well. They also suggest a potential role for the neuronal Sec1 protein (nSec1) in preventing the formation of syntaxin multimers.


    Organizational Affiliation

    Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
SYNTAXIN-1AA, B, C127Rattus norvegicusMutation(s): 0 
Gene Names: Stx1aSap
UniProt
Find proteins for P32851 (Rattus norvegicus)
Explore P32851 
Go to UniProtKB:  P32851
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.231 
  • R-Value Observed: 0.233 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 35.41α = 90
b = 99.56β = 97.46
c = 54.96γ = 90
Software Package:
Software NamePurpose
MLPHAREphasing
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-06-07
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance