Solution structure of a beta-neurotoxin from the New World scorpion Centruroides sculpturatus Ewing.
Jablonsky, M.J., Jackson, P.L., Trent, J.O., Watt, D.D., Krishna, N.R.(1999) Biochem Biophys Res Commun 254: 406-412
- PubMed: 9918851 
- DOI: https://doi.org/10.1006/bbrc.1998.9904
- Primary Citation of Related Structures:  
1B3C, 2B3C - PubMed Abstract: 
We report the detailed solution structure of the 7.2 kDa protein CsE-I, a beta-neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. This toxin binds to sodium channels, but unlike the alpha-neurotoxins, shifts the voltage of activation toward more negative potentials causing the membrane to fire spontaneously. Sequence-specific proton NMR assignments were made using 600 MHz 2D-NMR data. Distance geometry and dynamical simulated annealing refinements were performed using experimental distance and torsion angle constraints from NOESY and pH-COSY data. A family of 40 structures without constraint violations was generated, and an energy-minimized average structure was computed. The backbone conformation of the CsE-I toxin shows similar secondary structural features as the prototypical alpha-neurotoxin, CsE-v3, and is characterized by a short 2(1/2)-turn alpha-helix and a 3-strand antiparallel beta-sheet, both held together by disulfide bridges. The RMSD for the backbone atoms between CsE-I and CsE-v3 is 1.48 A. Despite this similarity in the overall backbone folding, the these two proteins show some important differences in the primary structure (sequence) and electrostatic potential surfaces. Our studies provide a basis for unravelling the role of these differences in relation to the known differences in the receptor sites on the voltage sensitive sodium channel for the alpha- and beta-neurotoxins.
Organizational Affiliation: 
Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.