1AQG

NMR STRUCTURE OF THE RHODOPSIN-BOUND C-TERMINAL PEPTIDE OF THE TRANSDUCIN ALPHA-SUBUNIT, 20 STRUCTURES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.

Kisselev, O.G.Kao, J.Ponder, J.W.Fann, Y.C.Gautam, N.Marshall, G.R.

(1998) Proc Natl Acad Sci U S A 95: 4270-4275

  • DOI: 10.1073/pnas.95.8.4270
  • Primary Citation of Related Structures:  
    1AQG

  • PubMed Abstract: 
  • A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein alpha subunits to initiate signal amplification is unknown ...

    A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein alpha subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) alpha subunit C-terminal undecapeptide Gtalpha(340-350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtalpha(340-350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an alphaL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325-346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor-G protein interface is demonstrated.


    Organizational Affiliation

    Institute for Biomedical Computing, Washington University Medical School, St. Louis, MO 63110, USA.



Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
TRANSDUCIN ALPHA-1 SUBUNITA11Bos taurusMutation(s): 0 
Gene Names: GNAT1
UniProt
Find proteins for P04695 (Bos taurus)
Explore P04695 
Go to UniProtKB:  P04695
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP04695
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-07-29
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-10-27
    Changes: Data collection, Database references, Derived calculations, Experimental preparation, Other