2KCN

Solution structure of the antifungal protein PAF from Penicillium chrysogenum


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 80 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Functional aspects of the solution structure and dynamics of PAF--a highly-stable antifungal protein from Penicillium chrysogenum

Batta, G.Barna, T.Gaspari, Z.Sandor, S.Kover, K.E.Binder, U.Sarg, B.Kaiserer, L.Chhillar, A.K.Eigentler, A.Leiter, E.Hegedus, N.Pocsi, I.Lindner, H.Marx, F.

(2009) FEBS J 276: 2875-2890

  • DOI: https://doi.org/10.1111/j.1742-4658.2009.07011.x
  • Primary Citation of Related Structures:  
    2KCN

  • PubMed Abstract: 

    Penicillium antifungal protein (PAF) is a promising antimycotic without toxic effects on mammalian cells and therefore may represent a drug candidate against the often lethal Aspergillus infections that occur in humans. The pathogenesis of PAF on sensitive fungi involves G-protein coupled signalling followed by apoptosis. In the present study, the solution structure of this small, cationic, antifungal protein from Penicillium chrysogenum is determined by NMR. We demonstrate that PAF belongs to the structural classification of proteins fold class of its closest homologue antifungal protein from Aspergillus giganteus. PAF comprises five beta-strands forming two orthogonally packed beta-sheets that share a common interface. The ambiguity in the assignment of two disulfide bonds out of three was investigated by NMR dynamics, together with restrained molecular dynamics calculations. The clue could not be resolved: the two ensembles with different disulfide patterns and the one with no S-S bond exhibit essentially the same fold. (15)N relaxation dispersion and interference experiments did not reveal disulfide bond rearrangements via slow exchange. The measured order parameters and the 3.0 ns correlation time are appropriate for a compact monomeric protein of this size. Using site-directed mutagenesis, we demonstrate that the highly-conserved and positively-charged lysine-rich surface region enhances the toxicity of PAF. However, the binding capability of the oligosaccharide/oligonucleotide binding fold is reduced in PAF compared to antifungal protein as a result of less solvent-exposed aromatic regions, thus explaining the absence of chitobiose binding. The present study lends further support to the understanding of the documented substantial differences between the mode of action of two highly homologous antifungal proteins.


  • Organizational Affiliation

    Department of Biochemistry, Centre of Arts, Humanities and Sciences, University of Debrecen, Hungary. batta@tigris.unideb.hu


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Antifungal protein55Penicillium chrysogenumMutation(s): 0 
Gene Names: paf
UniProt
Find proteins for Q01701 (Penicillium chrysogenum)
Explore Q01701 
Go to UniProtKB:  Q01701
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ01701
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 80 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2009-07-21
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-26
    Changes: Derived calculations, Other
  • Version 1.3: 2023-06-14
    Changes: Database references, Other