This family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD11 ...
This family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD118 [1].
This domain is found at the N-terminal end of the large ribosomal subunit protein eL19 found in eukaryotes and archaea. This is an helical domain that assumes an orthogonal bundle topology.
This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold.
This domain contains a P-loop motif, also found in several other families such as Pfam:PF00071, Pfam:PF00025 and Pfam:PF00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains.
Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as e ...
Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as elongation factor G and translation initiation factor IF-2. This domain is structurally related to Pfam:PF03143, and in fact has weak sequence matches to this domain.
This domain is found in elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopts a ribosomal protein S5 domain 2-like fold.
This presumed domain is found at the N-terminus of some isoforms of the cytoskeletal muscle protein plectin as well as the ribosomal S10 protein. This domain may be involved in RNA binding.
This family contains a central domain Pfam:PF00013, hence the amino and carboxyl terminal domains are stored separately. This is a minimal carboxyl-terminal domain. Some are much longer.
The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast pro ...
The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation [1]. The S4 domain probably mediates binding to RNA.
This family includes: archaeal 50S ribosomal protein L18Ae, often referred to as L20e or LX; fungal 60S ribosomal protein L20; and higher eukaryote 60S ribosomal protein L18A.