2BZ1

CRYSTAL STRUCTURE OF APO E. COLI GTP CYCLOHYDROLASE II


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.54 Å
  • R-Value Free: 0.212 
  • R-Value Work: 0.193 
  • R-Value Observed: 0.193 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

GTP Cyclohydrolase II Structure and Mechanism.

Ren, J.Kotaka, M.Lockyer, M.Lamb, H.K.Hawkins, A.R.Stammers, D.K.

(2005) J Biol Chem 280: 36912

  • DOI: https://doi.org/10.1074/jbc.M507725200
  • Primary Citation of Related Structures:  
    2BZ0, 2BZ1

  • PubMed Abstract: 

    GTP cyclohydrolase II converts GTP to 2,5-diamino-6-beta-ribosyl-4(3H)-pyrimidinone 5'-phosphate, formate and pyrophosphate, the first step in riboflavin biosynthesis. The essential role of riboflavin in metabolism and the absence of GTP cyclohydrolase II in higher eukaryotes makes it a potential novel selective antimicrobial drug target. GTP cyclohydrolase II catalyzes a distinctive overall reaction from GTP cyclohydrolase I; the latter converts GTP to dihydroneopterin triphosphate, utilized in folate and tetrahydrobiopterin biosynthesis. The structure of GTP cyclohydrolase II determined at 1.54-A resolution reveals both a different protein fold to GTP cyclohydrolase I and distinctive molecular recognition determinants for GTP; although in both enzymes there is a bound catalytic zinc. The GTP cyclohydrolase II.GMPCPP complex structure shows Arg(128) interacting with the alpha-phosphonate, and thus in the case of GTP, Arg(128) is positioned to act as the nucleophile for pyrophosphate release and formation of the proposed covalent guanylyl-GTP cyclohydrolase II intermediate. Tyr(105) is identified as playing a key role in GTP ring opening; it is hydrogen-bonded to the zinc-activated water molecule, the latter being positioned for nucleophilic attack on the guanine C-8 atom. Although GTP cyclohydrolase I and GTP cyclohydrolase II both use a zinc ion for the GTP ring opening and formate release, different residues are utilized in each case to catalyze this reaction step.


  • Organizational Affiliation

    Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GTP CYCLOHYDROLASE II196Escherichia coliMutation(s): 0 
EC: 3.5.4.25
UniProt
Find proteins for P0A7I7 (Escherichia coli (strain K12))
Explore P0A7I7 
Go to UniProtKB:  P0A7I7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A7I7
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.54 Å
  • R-Value Free: 0.212 
  • R-Value Work: 0.193 
  • R-Value Observed: 0.193 
  • Space Group: P 65 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.92α = 90
b = 71.92β = 90
c = 128.63γ = 120
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
SHELXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-08-19
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance