1Y28

Crystal structure of the R220A metBJFIXL HEME domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.251 
  • R-Value Observed: 0.251 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

A distal arginine in the oxygen-sensing heme-PAS domains is essential to ligand binding, signal transduction, and structure

Dunham, C.M.Dioum, E.M.Tuckerman, J.R.Gonzalez, G.Scott, W.G.Gilles-Gonzalez, M.A.

(2003) Biochemistry 42: 7701-7708

  • DOI: https://doi.org/10.1021/bi0343370
  • Primary Citation of Related Structures:  
    1Y28

  • PubMed Abstract: 

    To evaluate the contributions of the G(beta)-2 arginine to signal transduction in oxygen-sensing heme-PAS domains, we replaced this residue with alanine in Bradyrhizobium japonicum FixL and examined the results on heme-domain structure, ligand binding, and kinase regulation. In the isolated R220A BjFixL heme-PAS domain, the iron-histidine bond was increased in length by 0.31 A, the heme flattened even without a ligand, and the interaction of a presumed regulatory loop (the FG loop) with the helix of heme attachment was weakened. Binding of carbon monoxide was similar for ferrous BjFixL and R220A BjFixL. In contrast, the level of binding of oxygen was dramatically lower (K(d) approximately 1.5 mM) for R220A BjFixL, and this was manifested as 60- and 3-fold lower on- and off-rate constants, respectively. Binding of cyanide followed the same pattern as binding of oxygen. The catalytic activity was 3-4-fold higher in the "on-state" unliganded forms of R220A BjFixL than in the corresponding BjFixL species. Cyanide regulation of this activity was strongly impaired, but some inhibition was nevertheless preserved. Carbon monoxide and nitric oxide regulation, although weak in BjFixL, were abolished from R220A BjFixL. We conclude that the G(beta)-2 arginine assists in the binding of oxygen to BjFixL but does not accomplish this by stabilizing the oxy form. This arginine is not absolutely required for regulation, although it is important for shifting a pre-existing kinase equilibrium toward the inactive state on binding of regulatory ligands. These findings support a regulatory model in which the heme-PAS domain operates as an ensemble that couples to the kinase rather than a mechanism driven by a single central switch.


  • Organizational Affiliation

    Chemistry and Biochemistry Department, University of California, 236 Sinsheimer Labs, Santa Cruz, California 95064, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Sensor protein fixL131Bradyrhizobium japonicumMutation(s): 1 
Gene Names: FIXL
EC: 2.7.3
UniProt
Find proteins for P23222 (Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110))
Explore P23222 
Go to UniProtKB:  P23222
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP23222
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
HEM
Query on HEM

Download Ideal Coordinates CCD File 
B [auth A]PROTOPORPHYRIN IX CONTAINING FE
C34 H32 Fe N4 O4
KABFMIBPWCXCRK-RGGAHWMASA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.251 
  • R-Value Observed: 0.251 
  • Space Group: H 3 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 126.761α = 90
b = 126.761β = 90
c = 58.056γ = 120
Software Package:
Software NamePurpose
MOSFLMdata reduction
CCP4data reduction
CNSrefinement
CCP4data scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-12-07
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-10
    Changes: Database references, Derived calculations
  • Version 1.4: 2023-10-25
    Changes: Data collection, Refinement description