1O87

A new MgGDP complex of the Ffh NG domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.195 
  • R-Value Observed: 0.197 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Novel Protein and Mg2+ Configurations in the Mg2+Gdp Complex of the Srp Gtpase Ffh

Focia, P.J.Alam, H.Lu, T.Ramirez, U.D.Freymann, D.M.

(2004) Proteins 54: 222

  • DOI: https://doi.org/10.1002/prot.10598
  • Primary Citation of Related Structures:  
    1O87

  • PubMed Abstract: 

    Ffh is the signal sequence recognition and targeting subunit of the prokaryotic signal recognition particle (SRP). Previous structural studies of the NG GTPase domain of Ffh demonstrated magnesium-dependent and magnesium-independent binding conformations for GDP and GMPPNP that are believed to reflect novel mechanisms for exchange and activation in this member of the GTPase superfamily. The current study of the NG GTPase bound to Mg(2+)GDP reveals two new binding conformations-in the first the magnesium interactions are similar to those seen previously, however, the protein undergoes a conformational change that brings a conserved aspartate into its second coordination sphere. In the second, the protein conformation is similar to that seen previously, but the magnesium coordination sphere is disrupted so that only five oxygen ligands are present. The loss of the coordinating water molecule, at the position that would be occupied by the oxygen of the gamma-phosphate of GTP, is consistent with that position being privileged for exchange during phosphate release. The available structures of the GDP-bound protein provide a series of structural snapshots that illuminate steps along the pathway of GDP release following GTP hydrolysis.


  • Organizational Affiliation

    Department of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
SIGNAL RECOGNITION PARTICLE PROTEIN
A, B
297Thermus aquaticusMutation(s): 0 
UniProt
Find proteins for O07347 (Thermus aquaticus)
Explore O07347 
Go to UniProtKB:  O07347
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO07347
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GDP
Query on GDP

Download Ideal Coordinates CCD File 
F [auth A],
L [auth B]
GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
FMT
Query on FMT

Download Ideal Coordinates CCD File 
D [auth A],
E [auth A],
I [auth B],
J [auth B],
K [auth B]
FORMIC ACID
C H2 O2
BDAGIHXWWSANSR-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
C [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
MG
Query on MG

Download Ideal Coordinates CCD File 
G [auth A],
H [auth A],
M [auth B],
N [auth B]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.195 
  • R-Value Observed: 0.197 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.415α = 90
b = 113.631β = 111.76
c = 61.382γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-01-02
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description