1NPH

Gelsolin Domains 4-6 in Active, Actin Free Conformation Identifies Sites of Regulatory Calcium Ions


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.299 
  • R-Value Work: 0.247 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Gelsolin Domains 4-6 in Active, Actin-Free Conformation Identifies Sites of Regulatory Calcium Ions

Kolappan, S.Gooch, J.T.Weeds, A.G.McLaughlin, P.J.

(2003) J Mol Biol 329: 85-92

  • DOI: https://doi.org/10.1016/s0022-2836(03)00383-8
  • Primary Citation of Related Structures:  
    1NPH

  • PubMed Abstract: 

    Structural analysis of gelsolin domains 4-6 demonstrates that the two highest-affinity calcium ions that activate the molecule are in domains 5 and 6, one in each. An additional calcium site in domain 4 depends on subsequent actin binding and is seen only in the complex. The uncomplexed structure is primed to bind actin. Since the disposition of the three domains is similar in different crystal environments, either free or in complex with actin, the conformation in calcium is intrinsic to active gelsolin itself. Thus the actin-free structure shows that the structure with an actin monomer is a good model for an actin filament cap. The last 13 residues of domain 6 have been proposed to be a calcium-activated latch that, in the inhibited form only, links two halves of gelsolin. Comparison with the active structure shows that loosening of the latch contributes but is not central to activation. Calcium binding in domain 6 invokes a cascade of swapped ion-pairs. A basic residue swaps acidic binding partners to stabilise a straightened form of a helix that is kinked in inhibited gelsolin. The other end of the helix is connected by a loop to an edge beta-strand. In active gelsolin, an acidic residue in this helix breaks with its loop partner to form a new intrahelical ion-pairing, resulting in the breakage of the continuous sheet between domains 4 and 6, which is central to the inhibited conformation. A structural alignment of domain sequences provides a rationale to understand why the two calcium sites found here have the highest affinity amongst the five different candidate sites found in other gelsolin structures.


  • Organizational Affiliation

    Structural Biology Group, Institute of Cell and Molecular Biology, Wellcome Centre for Cell Biology, The University of Edinburgh, Swann Building, King's Buildings, Mayfield Road, EH9 3JR, Scotland, Edinburgh, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Gelsolin329Mus musculusMutation(s): 0 
Gene Names: GSN OR GSB
UniProt
Find proteins for P13020 (Mus musculus)
Explore P13020 
Go to UniProtKB:  P13020
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP13020
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.299 
  • R-Value Work: 0.247 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 122.52α = 90
b = 122.52β = 90
c = 82.723γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling
AMoREphasing
CNSrefinement
CCP4data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-05-13
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-16
    Changes: Data collection, Database references, Derived calculations, Refinement description