1HWV

MOLECULAR TOPOLOGY OF POLYCYCLIC AROMATIC CARCINOGENS DETERMINES DNA ADDUCT CONFORMATION: A LINK TO TUMORIGENIC ACTIVITY


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Molecular topology of polycyclic aromatic carcinogens determines DNA adduct conformation: a link to tumorigenic activity.

Lin, C.H.Huang, X.Kolbanovskii, A.Hingerty, B.E.Amin, S.Broyde, S.Geacintov, N.E.Patel, D.J.

(2001) J Mol Biol 306: 1059-1080

  • DOI: https://doi.org/10.1006/jmbi.2001.4425
  • Primary Citation of Related Structures:  
    1HWV, 1HX4

  • PubMed Abstract: 

    We report below on the solution structures of stereoisomeric "fjord" region trans-anti-benzo[c]phenanthrene-N2-guanine (designated (BPh)G) adducts positioned opposite cytosine within the (C-(BPh)G-C).(G-C-G) sequence context. We observe intercalation of the phenanthrenyl ring with stereoisomer-dependent directionality, without disruption of the modified (BPh)G.C base-pair. Intercalation occurs to the 5' side of the modified strand for the 1S stereoisomeric adduct and to the 3' side for the 1R stereoisomeric adduct, with the S and R-trans-isomers related to one another by inversion in a mirror plane at all four chiral carbon atoms on the benzylic ring. Intercalation of the fjord region BPh ring into the helix without disruption of the modified base-pair is achieved through buckling of the (BPh)G.C base-pair, displacement of the linkage bond from the plane of the (BPh)G base, adaptation of a chair pucker by the BPh benzylic ring and the propeller-like deviation from planarity of the BPh phenanthrenyl ring. It is noteworthy that intercalation without base-pair disruption occurs from the minor groove side for S and R-trans-anti BPh-N2-guanine adducts opposite C, in contrast to our previous demonstration of intercalation without modified base-pair disruption from the major groove side for S and R-trans-anti BPh-N6-adenine adducts opposite T. Further, these results on fjord region 1S and 1R-trans-anti (BPh)G adducts positioned opposite C are in striking contrast to earlier research with "bay" region benzo[a]pyrene-N2-guanine (designated (BP)G) adducts positioned opposite cytosine, where 10S and 10R-trans-anti stereoisomers were positioned with opposite directionality in the minor groove without modified base-pair disruption. They also are in contrast to the 10S and 10R-cis-anti stereoisomers of (BP)G adducts opposite C, where the pyrenyl ring is intercalated into the helix with directionality, but the modified base and its partner on the opposite strand are displaced out of the helix. These results are especially significant given the known greater tumorigenic potential of fjord region compared to bay region polycyclic aromatic hydrocarbons. The tumorigenic potential has been linked to repair efficiency such that bay region adducts can be readily repaired while their fjord region counterparts are refractory to repair. Our structural results propose a link between DNA adduct conformation and repair-dependent mutagenic activity, which could ultimately translate into structure-dependent differences in tumorigenic activities. We propose that the fjord region minor groove-linked BPh-N2-guanine and major groove-linked BPh-N6-adenine adducts are refractory to repair based on our observations that the phenanthrenyl ring intercalates into the helix without modified base-pair disruption. The helix is therefore minimally perturbed and the phenanthrenyl ring is not available for recognition by the repair machinery. By contrast, the bay region BP-N2-G adducts are susceptible to repair, since the repair machinery can recognize either the pyrenyl ring positioned in the minor groove for the trans-anti groove-aligned stereoisomers, or the disrupted modified base-pair for the cis-anti base-displaced intercalated stereoisomers.


  • Organizational Affiliation

    Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-D(*CP*CP*AP*TP*CP*GP*CP*TP*AP*CP*C)-3'11N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
5'-D(*GP*GP*TP*AP*GP*CP*GP*AP*TP*GP*G)-3'11N/A
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
BPI
Query on BPI

Download Ideal Coordinates CCD File 
C [auth A](1S)-1,2,3,4-TETRAHYDRO-BENZO[C]PHENANTHRENE-2,3,4-TRIOL
C18 H16 O3
WCUHTHVUZQCBTI-KBAYOESNSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-03-21
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations