7NHU

Crystal structure of desB30 insulin produced by cell free protein synthesis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.171 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.159 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Cell free protein synthesis versus yeast expression - A comparison using insulin as a model protein.

Jensen, A.B.Hubalek, F.Stidsen, C.E.Johansson, E.Oberg, F.K.Skjot, M.Kjeldsen, T.

(2021) Protein Expr Purif 186: 105910-105910

  • DOI: https://doi.org/10.1016/j.pep.2021.105910
  • Primary Citation of Related Structures:  
    7NHU

  • PubMed Abstract: 

    Expression of recombinant proteins traditionally require a cellular system to transcribe and translate foreign DNA to a desired protein. The process requires special knowledge of the specific cellular metabolism in use and is often time consuming and labour intensive. A cell free expression system provides an opportunity to express recombinant proteins without consideration of the living cell. Instead, a cell free system relies on either a cellular lysate or recombinant proteins to carry out protein synthesis, increasing overall production speed and ease of handling. The one-pot cell free setup is commonly known as an in vitro transcription/translation reaction (IVTT). Here we focused on a PURE (Protein synthesis Using Recombinant Elements) IVTT system based on recombinant proteins from Escherichia coli. We evaluated the cell free system's ability to express functional insulin analogues compared to Saccharomyces cerevisiae, a well-established system for large scale production of recombinant human insulin and insulin analogues. Significantly, it was found that correct insulin expression and folding was governed by the inherent properties of the primary amino acids sequence of insulin, whereas the eukaryotic features of the expression system apparently play a minor role. The IVTT system successfully produced insulin analogues identical in structure and with similar insulin receptor affinity to those produced by yeast. In conclusion we demonstrate that the PURE IVTT system is highly suited for expressing soluble molecules with higher order features and multiple disulphide bridges.


  • Organizational Affiliation

    Novo Nordisk, A/S Novo Nordisk Park, DK-2760, Måløv, Denmark. Electronic address: asdj@novonordisk.com.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Insulin21Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P01308 (Homo sapiens)
Explore P01308 
Go to UniProtKB:  P01308
PHAROS:  P01308
GTEx:  ENSG00000254647 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01308
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Insulin29Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P01308 (Homo sapiens)
Explore P01308 
Go to UniProtKB:  P01308
PHAROS:  P01308
GTEx:  ENSG00000254647 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01308
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.171 
  • R-Value Work: 0.159 
  • R-Value Observed: 0.159 
  • Space Group: I 21 3
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 77.939α = 90
b = 77.939β = 90
c = 77.939γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2021-06-16
    Type: Initial release
  • Version 1.1: 2021-06-23
    Changes: Database references
  • Version 1.2: 2024-01-31
    Changes: Data collection, Database references, Refinement description