6UP4

Crystal structure of the murine DHX36 helicase in complex with ADP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.189 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Function of Auxiliary Domains of the DEAH/RHA Helicase DHX36 in RNA Remodeling.

Srinivasan, S.Liu, Z.Chuenchor, W.Xiao, T.S.Jankowsky, E.

(2020) J Mol Biol 432: 2217-2231

  • DOI: https://doi.org/10.1016/j.jmb.2020.02.005
  • Primary Citation of Related Structures:  
    6UP4

  • PubMed Abstract: 

    The DEAH/RHA helicase DHX36 has been linked to cellular RNA and DNA quadruplex structures and to AU-rich RNA elements. In vitro, DHX36 remodels DNA and RNA quadruplex structures and unwinds DNA duplexes in an ATP-dependent manner. DHX36 contains the superfamily 2 helicase core and several auxiliary domains that are conserved in orthologs of the enzyme. The role of these auxiliary domains for the enzymatic function of DHX36 is not well understood. Here, we combine structural and biochemical studies to define the function of three auxiliary domains that contact nucleic acid. We first report the crystal structure of mouse DHX36 bound to ADP. The structure reveals an overall architecture of mouse DHX36 that is similar to previously reported architectures of fly and bovine DHX36. In addition, our structure shows conformational changes that accompany stages of the ATP-binding and hydrolysis cycle. We then examine the roles of the DHX36-specific motif (DSM), the OB-fold, and a conserved β-hairpin (β-HP) in mouse DHX36 in the remodeling of RNA structures. We demonstrate and characterize RNA duplex unwinding for DHX36 and examine the remodeling of inter- and intramolecular RNA quadruplex structures. We find that the DSM not only functions as a quadruplex binding adaptor but also promotes the remodeling of RNA duplex and quadruplex structures. The OB-fold and the β-HP contribute to RNA binding. Both domains are also essential for remodeling RNA quadruplex and duplex structures. Our data reveal roles of auxiliary domains for multiple steps of the nucleic acid remodeling reactions.


  • Organizational Affiliation

    Center for RNA Science and Therapeutics, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Dhx36 protein830Mus musculusMutation(s): 0 
Gene Names: Dhx36
UniProt
Find proteins for Q8VHK9 (Mus musculus)
Explore Q8VHK9 
Go to UniProtKB:  Q8VHK9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8VHK9
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ADP
Query on ADP

Download Ideal Coordinates CCD File 
B [auth A]ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
C [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.189 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.16α = 90
b = 115.93β = 90
c = 132.57γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH/NIAMS)United StatesR21AR069908

Revision History  (Full details and data files)

  • Version 1.0: 2020-04-15
    Type: Initial release
  • Version 1.1: 2020-05-27
    Changes: Database references
  • Version 1.2: 2024-03-13
    Changes: Data collection, Database references, Derived calculations