4R0V

[FeFe]-hydrogenase Oxygen Inactivation is Initiated by the Modification and Degradation of the H cluster 2Fe Subcluster


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.29 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.209 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

[FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster.

Swanson, K.D.Ratzloff, M.W.Mulder, D.W.Artz, J.H.Ghose, S.Hoffman, A.White, S.Zadvornyy, O.A.Broderick, J.B.Bothner, B.King, P.W.Peters, J.W.

(2015) J Am Chem Soc 137: 1809-1816

  • DOI: https://doi.org/10.1021/ja510169s
  • Primary Citation of Related Structures:  
    4R0V

  • PubMed Abstract: 

    The [FeFe]-hydrogenase catalytic site H cluster is a complex iron sulfur cofactor that is sensitive to oxygen (O2). The O2 sensitivity is a significant barrier for production of hydrogen as an energy source in water-splitting, oxygenic systems. Oxygen reacts directly with the H cluster, which results in rapid enzyme inactivation and eventual degradation. To investigate the progression of O2-dependent [FeFe]-hydrogenase inactivation and the process of H cluster degradation, the highly O2-sensitive [FeFe]-hydrogenase HydA1 from the green algae Chlamydomonas reinhardtii was exposed to defined concentrations of O2 while monitoring the loss of activity and accompanying changes in H cluster spectroscopic properties. The results indicate that H cluster degradation proceeds through a series of reactions, the extent of which depend on the initial enzyme reduction/oxidation state. The degradation process begins with O2 interacting and reacting with the 2Fe subcluster, leading to degradation of the 2Fe subcluster and leaving an inactive [4Fe-4S] subcluster state. This final inactive degradation product could be reactivated in vitro by incubation with 2Fe subcluster maturation machinery, specifically HydF(EG), which was observed by recovery of enzyme activity.


  • Organizational Affiliation

    Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fe-hydrogenase
A, B
514Chlamydomonas reinhardtiiMutation(s): 0 
Gene Names: CHLREDRAFT_183963hyd1hydAhydA1
EC: 1.18.99.1
UniProt
Find proteins for Q9FYU1 (Chlamydomonas reinhardtii)
Explore Q9FYU1 
Go to UniProtKB:  Q9FYU1
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9FYU1
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  2 Unique
IDChains TypeFormula2D DiagramParent
CSD
Query on CSD
A, B
L-PEPTIDE LINKINGC3 H7 N O4 SCYS
CSO
Query on CSO
A, B
L-PEPTIDE LINKINGC3 H7 N O3 SCYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.29 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.209 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 77.645α = 90
b = 70.964β = 91.91
c = 94.686γ = 90
Software Package:
Software NamePurpose
Blu-Icedata collection
MOLREPphasing
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2015-01-28
    Type: Initial release
  • Version 1.1: 2015-02-25
    Changes: Database references
  • Version 1.2: 2017-11-22
    Changes: Refinement description
  • Version 1.3: 2023-09-20
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.4: 2023-12-06
    Changes: Data collection