4JRC

Distal Stem I region from G. kaustophilus glyQS T box RNA

  • Classification: RNA
  • Mutation(s): No 

  • Deposited: 2013-03-21 Released: 2013-04-24 
  • Deposition Author(s): Grigg, J.C., Ke, A.

Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.67 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.205 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

T box RNA decodes both the information content and geometry of tRNA to affect gene expression.

Grigg, J.C.Chen, Y.Grundy, F.J.Henkin, T.M.Pollack, L.Ke, A.

(2013) Proc Natl Acad Sci U S A 110: 7240-7245

  • DOI: https://doi.org/10.1073/pnas.1222214110
  • Primary Citation of Related Structures:  
    4JRC

  • PubMed Abstract: 

    The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.


  • Organizational Affiliation

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.


Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains LengthOrganismImage
Distal Stem I region of the glyQS T box leader RNA
A, B
57N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.67 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.205 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 116.461α = 90
b = 41.511β = 106.76
c = 90.417γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing
RESOLVEphasing
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-04-24
    Type: Initial release
  • Version 1.1: 2013-05-01
    Changes: Database references
  • Version 1.2: 2013-05-22
    Changes: Database references
  • Version 1.3: 2024-02-28
    Changes: Data collection, Database references, Derived calculations