4ASU

F1-ATPase in which all three catalytic sites contain bound nucleotide, with magnesium ion released in the Empty site


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.289 
  • R-Value Work: 0.245 
  • R-Value Observed: 0.247 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structural Evidence of a New Catalytic Intermediate in the Pathway of ATP Hydrolysis by F1-ATPase from Bovine Heart Mitochondria.

Rees, D.M.Montgomery, M.G.Leslie, A.G.Walker, J.E.

(2012) Proc Natl Acad Sci U S A 109: 11139

  • DOI: https://doi.org/10.1073/pnas.1207587109
  • Primary Citation of Related Structures:  
    4ASU

  • PubMed Abstract: 

    The molecular description of the mechanism of F(1)-ATPase is based mainly on high-resolution structures of the enzyme from mitochondria, coupled with direct observations of rotation in bacterial enzymes. During hydrolysis of ATP, the rotor turns counterclockwise (as viewed from the membrane domain of the intact enzyme) in 120° steps. Because the rotor is asymmetric, at any moment the three catalytic sites are at different points in the catalytic cycle. In a "ground-state" structure of the bovine enzyme, one site (β(E)) is devoid of nucleotide and represents a state that has released the products of ATP hydrolysis. A second site (β(TP)) has bound the substrate, magnesium. ATP, in a precatalytic state, and in the third site (β(DP)), the substrate is about to undergo hydrolysis. Three successive 120° turns of the rotor interconvert the sites through these three states, hydrolyzing three ATP molecules, releasing the products and leaving the enzyme with two bound nucleotides. A transition-state analog structure, F(1)-TS, displays intermediate states between those observed in the ground state. For example, in the β(DP)-site of F(1)-TS, the terminal phosphate of an ATP molecule is undergoing in-line nucleophilic attack by a water molecule. As described here, we have captured another intermediate in the catalytic cycle, which helps to define the order of substrate release. In this structure, the β(E)-site is occupied by the product ADP, but without a magnesium ion or phosphate, providing evidence that the nucleotide is the last of the products of ATP hydrolysis to be released.


  • Organizational Affiliation

    Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 2XY, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ATP SYNTHASE SUBUNIT ALPHA, MITOCHONDRIAL
A, B, C
510Bos taurusMutation(s): 0 
UniProt
Find proteins for P19483 (Bos taurus)
Explore P19483 
Go to UniProtKB:  P19483
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19483
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
ATP SYNTHASE SUBUNIT BETA, MITOCHONDRIAL
D, E, F
480Bos taurusMutation(s): 0 
EC: 3.6.3.14
UniProt
Find proteins for P00829 (Bos taurus)
Explore P00829 
Go to UniProtKB:  P00829
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00829
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
ATP SYNTHASE SUBUNIT GAMMA, MITOCHONDRIAL273Bos taurusMutation(s): 0 
UniProt
Find proteins for P05631 (Bos taurus)
Explore P05631 
Go to UniProtKB:  P05631
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP05631
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 4
MoleculeChains Sequence LengthOrganismDetailsImage
ATP SYNTHASE SUBUNIT DELTA, MITOCHONDRIAL146Bos taurusMutation(s): 0 
UniProt
Find proteins for P05630 (Bos taurus)
Explore P05630 
Go to UniProtKB:  P05630
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP05630
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 5
MoleculeChains Sequence LengthOrganismDetailsImage
ATP SYNTHASE SUBUNIT EPSILON, MITOCHONDRIAL50Bos taurusMutation(s): 0 
UniProt
Find proteins for P05632 (Bos taurus)
Explore P05632 
Go to UniProtKB:  P05632
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP05632
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ADP
Query on ADP

Download Ideal Coordinates CCD File 
J [auth A]
L [auth B]
N [auth C]
P [auth D]
R [auth E]
J [auth A],
L [auth B],
N [auth C],
P [auth D],
R [auth E],
S [auth F]
ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
K [auth A],
M [auth B],
O [auth C],
Q [auth D],
T [auth F]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.289 
  • R-Value Work: 0.245 
  • R-Value Observed: 0.247 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.268α = 90
b = 135.113β = 90
c = 266.355γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-06-27
    Type: Initial release
  • Version 1.1: 2012-07-04
    Changes: Other
  • Version 1.2: 2012-07-25
    Changes: Database references
  • Version 1.3: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description