3HLS

Crystal structure of the signaling helix coiled-coil doimain of the BETA-1 subunit of the soluble guanylyl cyclase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.216 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of the signaling helix coiled-coil domain of the beta-1 subunit of the soluble guanylyl cyclase.

Ma, X.Beuve, A.van den Akker, F.

(2010) BMC Struct Biol 10: 2-2

  • DOI: https://doi.org/10.1186/1472-6807-10-2
  • Primary Citation of Related Structures:  
    3HLS

  • PubMed Abstract: 

    The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner. To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGCbeta1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 A resolution. The CC structure of sGCbeta1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally) active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.


  • Organizational Affiliation

    Department of Biochemistry/RT500, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Guanylate cyclase soluble subunit beta-1
A, B, C, D, E
A, B, C, D, E, F, G, H
66Rattus norvegicusMutation(s): 1 
Gene Names: Guc1b3Gucy1b1Gucy1b3soluble guanylyl cyclase beta-1
EC: 4.6.1.2
UniProt
Find proteins for P20595 (Rattus norvegicus)
Explore P20595 
Go to UniProtKB:  P20595
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP20595
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A, B, C, D, E
A, B, C, D, E, F, G, H
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.216 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 152.039α = 90
b = 65.814β = 129.95
c = 98.626γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
SOLVEphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-01-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-13
    Changes: Database references, Derived calculations