2P38

Crystal Structure of Pyrococcus Abyssi Protein Homologue of Saccharomyces Cerevisiae NIP7P


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.210 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural Insights into the Interaction of the Nip7 PUA Domain with Polyuridine RNA

Coltri, P.P.Guimaraes, B.G.Granato, D.C.Luz, J.S.Teixeira, E.C.Oliveira, C.C.Zanchin, N.I.

(2007) Biochemistry 46: 14177-14187

  • DOI: https://doi.org/10.1021/bi7015876
  • Primary Citation of Related Structures:  
    2P38

  • PubMed Abstract: 

    The conserved protein Nip7 is involved in ribosome biogenesis, being required for proper 27S pre-rRNA processing and 60S ribosome subunit assembly in Saccharomyces cerevisiae. Yeast Nip7p interacts with nucleolar proteins and with the exosome subunit Rrp43p, but its molecular function remains to be determined. Solution of the Pyrococcus abyssi Nip7 (PaNip7) crystal structure revealed a monomeric protein composed by two alpha-beta domains. The N-terminal domain is formed by a five-stranded antiparallel beta-sheet surrounded by three alpha-helices and a 310 helix while the C-terminal, a mixed beta-sheet domain composed by strands beta8 to beta12, one alpha-helix, and a 310 helix, corresponds to the conserved PUA domain (after Pseudo-Uridine synthases and Archaeosine-specific transglycosylases). By combining structural analyses and RNA interaction assays, we assessed the ability of both yeast and archaeal Nip7 orthologues to interact with RNA. Structural alignment of the PaNip7 PUA domain with the RNA-interacting surface of the ArcTGT (archaeosine tRNA-guanine transglycosylase) PUA domain indicated that in the archaeal PUA domain positively charged residues (R151, R152, K155, and K158) are involved in RNA interaction. However, equivalent positions are occupied by mostly hydrophobic residues (A/G160, I161, F164, and A167) in eukaryotic Nip7 orthologues. Both proteins can bind specifically to polyuridine, and RNA interaction requires specific residues of the PUA domain as determined by site-directed mutagenesis. This work provides experimental verification that the PUA domain mediates Nip7 interaction with RNA and reveals that the preference for interaction with polyuridine sequences is conserved in Archaea and eukaryotic Nip7 proteins.


  • Organizational Affiliation

    Center for Structural Molecular Biology, Brazilian Synchrotron Light Laboratory, LNLS, Rua Giuseppe Maximo Scolfaro 10000, P.O. Box 6192, CEP13083-970, Campinas SP, Brazil.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Protein involved in ribosomal biogenesis
A, B
166Pyrococcus abyssiMutation(s): 0 
UniProt
Find proteins for Q9V219 (Pyrococcus abyssi (strain GE5 / Orsay))
Explore Q9V219 
Go to UniProtKB:  Q9V219
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9V219
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.210 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 88.492α = 90
b = 90.284β = 134.29
c = 63.347γ = 90
Software Package:
Software NamePurpose
SHARPphasing
REFMACrefinement
MAR345data collection
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-01-15
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-10-18
    Changes: Refinement description
  • Version 1.3: 2024-02-21
    Changes: Data collection, Database references