2L2U

NMR Solution Structures of +3 (5' staggered) Bistranded Abasic Site Lesions in DNA


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

NMR solution structures of clustered abasic site lesions in DNA: structural differences between 3'-staggered (-3) and 5'-staggered (+3) bistranded lesions.

Hazel, R.D.de los Santos, C.

(2010) Biochemistry 49: 8978-8987

  • DOI: https://doi.org/10.1021/bi101021e
  • Primary Citation of Related Structures:  
    2L2U, 2L2V

  • PubMed Abstract: 

    Ionizing radiation produces a distinctive pattern of bistranded clustered lesions in DNA. A relatively low number of clustered lesions may be lethal to cells when compared to a larger number of single lesions. Enzyme cleavage experiments suggest that the orientation of bistranded lesions causes differential recognition and removal of these lesions. Like that of a previous study of bistranded abasic site lesion [Hazel, R. D., Tian, K., and de los Santos, C. (2008) Biochemistry 47, 11909-11919], the aim of this investigation was to determine the structures of two DNA duplexes each containing two synthetic apurinic/apyrimidinic (AP) residues, positioned on opposite strands and separated by two base pairs. In the first duplex, the AP residues are staggered in the 3' orientation [-3 duplex, (AP)(2)-3 duplex], while in the second duplex, the AP residues are staggered in the 5' orientation [+3 duplex, (AP)(2)+3 duplex]. NOESY spectra recorded in 100 and 10% D(2)O buffer solutions allowed the assignment of the nonexchangeable and exchangeable protons, respectively, for each duplex. Cross-peak connectivity in the nonexchangeable proton spectra indicates that the duplex is a regular right-handed helix with the AP residues and orphan bases located inside the duplexes. The exchangeable proton spectra establish the formation of Watson-Crick G·C alignment for the two base pairs between the lesion sites in both duplexes. Distance-restrained molecular dynamics simulation confirmed the intrahelical orientations of the AP residues. The proximity of the AP residues across the minor groove of the -3 duplex and across the major groove in the +3 duplex is similar to their locations in the case of -1 and +1 clusters. This difference in structure may be a key factor in the differential recognition of bistranded AP lesions by human AP endonuclease.


  • Organizational Affiliation

    Department of Physiology and Biophysics, Stony Brook University, School of Medicine, Stony Brook, NY 11794-8651, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA (5'-D(*CP*AP*GP*CP*GP*(3DR)P*GP*TP*AP*TP*AP*AP*GP*C)-3')14N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
DNA (5'-D(*GP*CP*TP*TP*AP*(3DR)P*AP*CP*AP*CP*GP*CP*TP*G)-3')14N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-11-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance