2ZU5

complex structure of SARS-CoV 3CL protease with TG-0205486


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.183 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structural Basis of Inhibition Specificities of 3C and 3C-like Proteases by Zinc-coordinating and Peptidomimetic Compounds

Lee, C.C.Kuo, C.J.Ko, T.P.Hsu, M.F.Tsui, Y.C.Chang, S.C.Yang, S.Chen, S.J.Chen, H.C.Hsu, M.C.Shih, S.R.Liang, P.H.Wang, A.H.-J.

(2009) J Biol Chem 284: 7646-7655

  • DOI: https://doi.org/10.1074/jbc.M807947200
  • Primary Citation of Related Structures:  
    2ZTX, 2ZTY, 2ZTZ, 2ZU1, 2ZU2, 2ZU3, 2ZU4, 2ZU5

  • PubMed Abstract: 

    Human coxsackievirus (CV) belongs to the picornavirus family, which consists of over 200 medically relevant viruses. In picornavirus, a chymotrypsin-like protease (3C(pro)) is required for viral replication by processing the polyproteins, and thus it is regarded as an antiviral drug target. A 3C-like protease (3CL(pro)) also exists in human coronaviruses (CoV) such as 229E and the one causing severe acute respiratory syndrome (SARS). To combat SARS, we previously had developed peptidomimetic and zinc-coordinating inhibitors of 3CL(pro). As shown in the present study, some of these compounds were also found to be active against 3C(pro) of CV strain B3 (CVB3). Several crystal structures of 3C(pro) from CVB3 and 3CL(pro) from CoV-229E and SARS-CoV in complex with the inhibitors were solved. The zinc-coordinating inhibitor is tetrahedrally coordinated to the His(40)-Cys(147) catalytic dyad of CVB3 3C(pro). The presence of specific binding pockets for the residues of peptidomimetic inhibitors explains the binding specificity. Our results provide a structural basis for inhibitor optimization and development of potential drugs for antiviral therapies.


  • Organizational Affiliation

    Structural Biology Program, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
3C-like proteinase306Severe acute respiratory syndrome-related coronavirusMutation(s): 0 
EC: 3.4.22
UniProt
Find proteins for P0C6X7 (Severe acute respiratory syndrome coronavirus)
Explore P0C6X7 
Go to UniProtKB:  P0C6X7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C6X7
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZU5
Query on ZU5

Download Ideal Coordinates CCD File 
B [auth A]N-[(benzyloxy)carbonyl]-O-tert-butyl-L-threonyl-N-[(1R)-4-cyclopropyl-4-oxo-1-{[(3S)-2-oxopyrrolidin-3-yl]methyl}butyl]-L-leucinamide
C34 H52 N4 O7
QIMPWBPEAHOISN-XSLDCGIXSA-N
Binding Affinity Annotations 
IDSourceBinding Affinity
ZU5 PDBBind:  2ZU5 Ki: 99 (nM) from 1 assay(s)
Biologically Interesting Molecules (External Reference) 1 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.208 
  • R-Value Work: 0.183 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 108.69α = 90
b = 81.27β = 104.49
c = 53.29γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
CNSrefinement
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-01-13
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Atomic model, Database references, Derived calculations, Non-polymer description, Structure summary, Version format compliance
  • Version 1.2: 2012-12-12
    Changes: Other
  • Version 1.3: 2020-02-12
    Changes: Advisory, Derived calculations
  • Version 1.4: 2023-11-01
    Changes: Data collection, Database references, Refinement description