2RMI

3D NMR structure of astressin


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Astressin-amide and astressin-acid are structurally different in dimethylsulfoxide

Grace, C.R.Cervini, L.Gulyas, J.Rivier, J.Riek, R.

(2007) Biopolymers 87: 196-205

  • DOI: https://doi.org/10.1002/bip.20818
  • Primary Citation of Related Structures:  
    2RMI

  • PubMed Abstract: 

    The C-terminally amidated CRF antagonist astressin binds to CRF-R1 or CRF-R2 receptors with low nanomolar affinity while the corresponding astressin-acid has >100 times less affinity. To understand the role of the amide group in binding, the conformations of astressin-amide and astressin-acid were studied in DMSO using NMR techniques. The 3D NMR structures show that the backbones of both analogs prefer an alpha-helical conformation, with a small kink around Gln(26). However, astressin-amide has a well-defined helical structure from Leu(27) to Ile(41) and a conformation very similar to the bioactive conformation reported by our group (Grace et al., Proc Natl Acad Sci USA 2007, 104, 4858-4863). In contrast, astressin-acid has an irregular helical conformation from Arg(35) onward, including a rearrangement of the side chains in that region. This structural difference highlights the crucial role of the C-terminal amidation for stabilization of astressin's bioactive conformation.


  • Organizational Affiliation

    Structural Biology Laboratory, The Salk Institute for Biological Studies, LA Jolla, CA 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
astressin30N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
NLE
Query on NLE
A
L-PEPTIDE LINKINGC6 H13 N O2LEU
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-10-30
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2022-03-16
    Changes: Database references, Derived calculations