2LUQ

Solution structure of double-stranded RNA binding domain of S.cerevisiae RNase III (rnt1p)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Intrinsic Dynamics of an Extended Hydrophobic Core in the S. cerevisiae RNase III dsRBD Contributes to Recognition of Specific RNA Binding Sites.

Hartman, E.Wang, Z.Zhang, Q.Roy, K.Chanfreau, G.Feigon, J.

(2013) J Mol Biol 425: 546-562

  • DOI: https://doi.org/10.1016/j.jmb.2012.11.025
  • Primary Citation of Related Structures:  
    2LUQ

  • PubMed Abstract: 

    The Saccharomyces cerevisiae RNase III enzyme Rnt1p preferentially binds to double-stranded RNA hairpin substrates with a conserved (A/u)GNN tetraloop fold, via shape-specific interactions by its double-stranded RNA-binding domain (dsRBD) helix α1 to the tetraloop minor groove. To investigate whether conformational flexibility in the dsRBD regulates the binding specificity, we determined the backbone dynamics of the Rnt1p dsRBD in the free and AGAA hairpin-bound states using NMR spin-relaxation experiments. The intrinsic microsecond-to-millisecond timescale dynamics of the dsRBD suggests that helix α1 undergoes conformational sampling in the free state, with large dynamics at some residues in the α1-β1 loop (α1-β1 hinge). To correlate free dsRBD dynamics with structural changes upon binding, we determined the solution structure of the free dsRBD used in the previously determined RNA-bound structures. The Rnt1p dsRBD has an extended hydrophobic core comprising helix α1, the α1-β1 loop, and helix α3. Analysis of the backbone dynamics and structures of the free and bound dsRBD reveals that slow-timescale dynamics in the α1-β1 hinge are associated with concerted structural changes in the extended hydrophobic core that govern binding of helix α1 to AGAA tetraloops. The dynamic behavior of the dsRBD bound to a longer AGAA hairpin reveals that dynamics within the hydrophobic core differentiate between specific and nonspecific sites. Mutations of residues in the α1-β1 hinge result in changes to the dsRBD stability and RNA-binding affinity and cause defects in small nucleolar RNA processing invivo. These results reveal that dynamics in the extended hydrophobic core are important for binding site selection by the Rnt1p dsRBD.


  • Organizational Affiliation

    Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ribonuclease 390Saccharomyces cerevisiae S288CMutation(s): 0 
Gene Names: RNT1YM9408.01CYM9959.21YMR239C
UniProt
Find proteins for Q02555 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore Q02555 
Go to UniProtKB:  Q02555
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ02555
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-12-05
    Type: Initial release
  • Version 1.1: 2012-12-19
    Changes: Database references
  • Version 1.2: 2013-02-13
    Changes: Database references
  • Version 1.3: 2023-06-14
    Changes: Data collection, Database references, Other