1WK8

Isoleucyl-tRNA synthetase editing domain complexed with the pre-transfer editing substrate analogue, Val-AMS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase

Fukunaga, R.Yokoyama, S.

(2006) J Mol Biol 359: 901-912

  • DOI: https://doi.org/10.1016/j.jmb.2006.04.025
  • Primary Citation of Related Structures:  
    1WK8, 1WNY, 1WNZ

  • PubMed Abstract: 

    In isoleucyl-tRNA synthetase (IleRS), the "editing" domain contributes to accurate aminoacylation by hydrolyzing the mis-synthesized intermediate, valyl-adenylate, in the "pre-transfer" editing mode and the incorrect final product, valyl-tRNA(Ile), in the "post-transfer" editing mode. In the present study, we determined the crystal structures of the Thermus thermophilus IleRS editing domain complexed with the substrate analogues in the pre and post-transfer modes, both at 1.7 A resolution. The active site accommodates the two analogues differently, with the valine side-chain rotated by about 120 degrees and the adenosine moiety oriented upside down. The substrate-binding pocket adjusts to the adenosine-monophosphate and adenosine moieties in the pre and post-transfer modes, respectively, by flipping the Trp227 side-chain by about 180 degrees . The substrate recognition mechanisms of IleRS are characterized by the active-site rearrangement between the two editing modes, and therefore differ from those of the homologous valyl and leucyl-tRNA synthetases from T.thermophilus, in which the post-transfer mode is predominant. Both modes of editing activities were reduced by replacements of Trp227 with Ala, Val, Leu, and His, but not by those with Phe and Tyr, indicating that the aromatic ring of Trp227 is important for the substrate recognition. In both editing modes, Thr233 and His319 recognize the substrate valine side-chain, regardless of the valine side-chain rotation, and reject the isoleucine side-chain. The T233A and H319A mutants have detectable editing activities against the cognate isoleucine.


  • Organizational Affiliation

    Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Isoleucyl-tRNA synthetase
A, B
194Thermus thermophilusMutation(s): 0 
Gene Names: ILES
EC: 6.1.1.5
UniProt
Find proteins for P56690 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore P56690 
Go to UniProtKB:  P56690
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP56690
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
VMS
Query on VMS

Download Ideal Coordinates CCD File 
C [auth B]5'O-[N-(L-VALYL)SULPHAMOYL]ADENOSINE
C15 H23 N7 O7 S
TXCZGHBHNXNXMA-CYUGOOACSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 101.998α = 90
b = 101.998β = 90
c = 84.883γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-09-27
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-10-25
    Changes: Data collection, Database references, Derived calculations, Refinement description