1U2N

Structure CBP TAZ1 Domain


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding

De Guzman, R.N.Wojciak, J.M.Martinez-Yamout, M.A.Dyson, H.J.Wright, P.E.

(2005) Biochemistry 44: 490-497

  • DOI: https://doi.org/10.1021/bi048161t
  • Primary Citation of Related Structures:  
    1U2N

  • PubMed Abstract: 

    The transcriptional coactivator protein CBP and its paralog p300 each contain two homologous zinc-containing TAZ domains, which constitute the interaction sites for a number of transcription factors. Previous reports of the three-dimensional structures of TAZ1 in complex with binding partners and of the isolated CBP TAZ2 domain show a distinctive topology composed of four amphipathic helices, organized by three zinc-binding clusters with HCCC-type coordination. The isolated CBP TAZ2 domain forms a stable three-dimensional structure in solution, but a recent report [Dial, R., Sun, Z., and Freedman, S. J. (2003) Biochemistry 42, 9937] suggested that the isolated p300 TAZ1 domain lacks a well-defined structure and behaves like a molten globule, even in the presence of Zn(2+), and that the formation of a stable three-dimensional structure requires binding of a protein partner. In marked contrast to this result, we find that both the CBP and p300 TAZ domains in the presence of stoichiometric concentrations of Zn(2+) adopt a well-defined structure in solution in the absence of binding partners. We have determined the three-dimensional structure of the isolated CBP TAZ1 domain by NMR methods and show that it has the same structure in the presence and absence of binding partners. This is an important finding: whether the free TAZ1 domain forms a folded structure or behaves as a molten globule will have a significant bearing on the mechanism of protein-protein recognition. Although TAZ1 and TAZ2 share many structural similarities, there is a major structural difference: the fourth helix is oriented in opposite directions in the TAZ1 and TAZ2 domains. The structure of the free TAZ1 domain suggests that this difference is an inherent feature that determines binding specificity and facilitates discrimination between different subsets of transcription factors by the two TAZ domains.


  • Organizational Affiliation

    Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CREB binding protein100Mus musculusMutation(s): 0 
Gene Names: CBP
EC: 2.3.1.48
UniProt
Find proteins for P45481 (Mus musculus)
Explore P45481 
Go to UniProtKB:  P45481
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP45481
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-04-26
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-02
    Changes: Data collection, Database references, Derived calculations