1RE2

HUMAN LYSOZYME LABELLED WITH TWO 2',3'-EPOXYPROPYL BETA-GLYCOSIDE OF N-ACETYLLACTOSAMINE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.171 

wwPDB Validation   3D Report Full Report


This is version 2.1 of the entry. See complete history


Literature

Dual affinity labeling of the active site of human lysozyme with an N-acetyllactosamine derivative: first ligand assisted recognition of the second ligand.

Muraki, M.Harata, K.Sugita, N.Sato, K.

(1999) Biochemistry 38: 540-548

  • DOI: https://doi.org/10.1021/bi981779g
  • Primary Citation of Related Structures:  
    1RE2

  • PubMed Abstract: 

    Among the three kinds of the 2',3'-epoxypropyl beta-glycoside of disaccharides (GlcNAc-beta1,4-GlcNAc, Gal-beta1,4-GlcNAc, and Man-beta1,4-GlcNAc), the derivative of N-acetyllactosamine (Gal-beta1,4-GlcNAc-Epo) caused the dual labeling of human lysozyme (HL) most efficiently. The labeled HL was crystallized and analyzed by X-ray diffraction methodology. The X-ray analysis located the two Gal-beta1,4-GlcNAc-Epo moieties inside the catalytic cleft of HL. The attachment sites were the side-chain carboxylate groups of the catalytic residues Glu35 and Asp53 in HL. The first Gal-beta1, 4-GlcNAc-Epo moiety occupied virtually the same position as observed in the HL labeled with single Gal-beta1,4-GlcNAc-Epo molecule. The second Gal-beta1,4-GlcNAc-Epo moiety was recognized via the carbohydrate-carbohydrate interaction with the first Gal-beta1, 4-GlcNAc-Epo moiety in addition to the protein-carbohydrate interaction with the "right-side" catalytic cleft of HL through a number of hydrogen bonds including water-mediated ones as well as many van der Waals contacts. The two N-acetylglucosamine residues stacked with each other, while the two rings of galactose residues approximately shared the same plane. The dual labeling with two Gal-beta1,4-GlcNAc-Epo molecules was supposed to have occurred sequentially, which was accompanied with the alteration to the pKa of Glu35 derived from the esterification of Asp53 in the first labeling. Both asymmetric carbons in the connection parts between HL and N-acetyllactosamine moieties showed the same stereoconfiguration derived from the reaction with (2'R) stereoisomer concerning the epoxide group in the labeling reagent. The results demonstrated that the HL labeled with single Gal-beta1,4-GlcNAc-Epo was functional as a novel N-acetyllactosamine-binding protein, and the second labeling was performed by way of the first-ligand assisted recognition of the second ligand.


  • Organizational Affiliation

    Biomolecules Department, National Institute of Bioschience and Human-Technology, Tsukuba, Ibaraki 305-8566, Japan. muraki@nibh.go.jp


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROTEIN (LYSOZYME)130Homo sapiensMutation(s): 0 
EC: 3.2.1.17
UniProt & NIH Common Fund Data Resources
Find proteins for P61626 (Homo sapiens)
Explore P61626 
Go to UniProtKB:  P61626
PHAROS:  P61626
GTEx:  ENSG00000090382 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP61626
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
B, C
2N/A
Glycosylation Resources
GlyTouCan:  G00055MO
GlyCosmos:  G00055MO
GlyGen:  G00055MO
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.171 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 56.45α = 90
b = 62.3β = 90
c = 32.98γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-05-05
    Type: Initial release
  • Version 1.1: 2008-04-26
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2023-08-02
    Changes: Database references, Refinement description, Structure summary