1G4M

CRYSTAL STRUCTURE OF BOVINE BETA-ARRESTIN 1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.269 
  • R-Value Work: 0.235 
  • R-Value Observed: 0.235 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation.

Han, M.Gurevich, V.V.Vishnivetskiy, S.A.Sigler, P.B.Schubert, C.

(2001) Structure 9: 869-880

  • DOI: https://doi.org/10.1016/s0969-2126(01)00644-x
  • Primary Citation of Related Structures:  
    1G4M, 1G4R

  • PubMed Abstract: 

    Arrestins are responsible for the desensitization of many sequence-divergent G protein-coupled receptors. They compete with G proteins for binding to activated phosphorylated receptors, initiate receptor internalization, and activate additional signaling pathways. In order to understand the structural basis for receptor binding and arrestin's function as an adaptor molecule, we determined the X-ray crystal structure of two truncated forms of bovine beta-arrestin in its cytosolic inactive state to 1.9 A. Mutational analysis and chimera studies identify the regions in beta-arrestin responsible for receptor binding specificity. beta-arrestin demonstrates high structural homology with the previously solved visual arrestin. All key structural elements responsible for arrestin's mechanism of activation are conserved. Based on structural analysis and mutagenesis data, we propose a previously unappreciated part in beta-arrestin's mode of action by which a cationic amphipathic helix may function as a reversible membrane anchor. This novel activation mechanism would facilitate the formation of a high-affinity complex between beta-arrestin and an activated receptor regardless of its specific subtype. Like the interaction between beta-arrestin's polar core and the phosphorylated receptor, such a general activation mechanism would contribute to beta-arrestin's versatility as a regulator of many receptors.


  • Organizational Affiliation

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. mhan@mpi.com


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
BETA-ARRESTIN1
A, B
393Bos taurusMutation(s): 0 
UniProt
Find proteins for P17870 (Bos taurus)
Explore P17870 
Go to UniProtKB:  P17870
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP17870
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.269 
  • R-Value Work: 0.235 
  • R-Value Observed: 0.235 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 62.4α = 90
b = 73.717β = 98.73
c = 115.76γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-10-03
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Data collection, Database references, Refinement description