1FD8

SOLUTION STRUCTURE OF THE CU(I) FORM OF THE YEAST METALLOCHAPERONE, ATX1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1.

Arnesano, F.Banci, L.Bertini, I.Huffman, D.L.O'Halloran, T.V.

(2001) Biochemistry 40: 1528-1539

  • DOI: https://doi.org/10.1021/bi0014711
  • Primary Citation of Related Structures:  
    1FD8, 1FES

  • PubMed Abstract: 

    The (1)H NMR solution structure of the Cu(I)-bound form of Atx1, a 73-amino acid metallochaperone protein from the yeast Saccharomyces cerevisiae, has been determined. Ninety percent of the (1)H and 95% of the (15)N resonances were assigned, and 1184 meaningful NOEs and 42 (3)J(HNH)(alpha) and 60 (1)J(HN) residual dipolar couplings provided a family of structures with rmsd values to the mean structure of 0.37 +/- 0.07 A for the backbone and 0.83 +/- 0.08 A for all heavy atoms. The structure is constituted by four antiparallel beta strands and two alpha helices in a betaalphabetabetaalphabeta fold. Following EXAFS data [Pufahl, R., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., Cizewski Culotta, V., Penner-Hahn, J. E., and O'Halloran, T. V. (1997) Science 278, 853-856], a copper ion can be placed between two sulfur atoms of Cys15 and Cys18. The structure of the reduced apo form has also been determined with similar resolution using 1252 meaningful NOEs (rmsd values for the family to the mean structure are 0.67 +/- 0.12 A for the backbone and 1.00 +/- 0.12 A for all heavy atoms). Comparison of the Cu(I) and apo conformations of the protein reveals that the Cu(I) binding cysteines move from a buried site in the bound metal form to a solvent-exposed conformation on the surface of the protein after copper release. Furthermore, copper release leads to a less helical character in the metal binding site. Comparison with the Hg(II)-Atx1 solid-state structure [Rosenzweig, A. C., Huffman, D. L., Hou, M. Y., Wernimont, A. K., Pufahl, R. A., and O'Halloran, T. V. (1999) Structure 7, 605-617] provides insights into the copper transfer mechanism, and a pivotal role for Lys65 in the metal capture and release process is proposed.


  • Organizational Affiliation

    Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ATX1 COPPER CHAPERONE73Saccharomyces cerevisiaeMutation(s): 0 
UniProt
Find proteins for P38636 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P38636 
Go to UniProtKB:  P38636
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP38636
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CU1
Query on CU1

Download Ideal Coordinates CCD File 
B [auth A]COPPER (I) ION
Cu
VMQMZMRVKUZKQL-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-03-14
    Type: Initial release
  • Version 1.1: 2007-10-21
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations