2J11

p53 tetramerization domain mutant Y327S T329G Q331G


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 30 
  • Conformers Submitted: 29 
  • Selection Criteria: TOTAL ENERGY 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.

Mora, P.Carbajo, R.J.Pineda-Lucena, A.Sanchez del Pino, M.M.Perez-Paya, E.

(2008) Proteins 71: 1670-1685

  • DOI: https://doi.org/10.1002/prot.21854
  • Primary Citation of Related Structures:  
    2J0Z, 2J10, 2J11

  • PubMed Abstract: 

    The role of hydrophobic amino acids in the formation of hydrophobic cores as one of the major driving forces in protein folding has been extensively studied. However, the implication of neutral solvent-exposed amino acids is less clear and available information is scarce. We have used a combinatorial approach to study the structural relevance of three solvent-exposed residues (Tyr(327), Thr(329), and Gln(331)) located in thebeta-sheet of the tetramerization domain of the tumor suppressor p53 (p53TD). A conformationally defined peptide library was designed where these three positions were randomized. The library was screened for tetramer stability. A set of p53TD mutants containing putative stabilizing or destabilizing residue combinations was synthesized for a thermodynamic characterization. Unfolding experiments showed a wide range of stabilities, with T(m) values between 27 and 83 degrees C. Wild type p53TD and some highly destabilized and stabilized mutants were further characterized. Thermodynamic and biophysical data indicated that these proteins were folded tetramers, with the same overall structure, in equilibrium with unfolded monomers. An NMR study confirmed that the main structural features of p53TD are conserved in all the mutants analyzed. The thermodynamic stability of the different p53TD mutants showed a strong correlation with parameters that favor formation and stabilization of the beta-sheet. We propose that stabilization through hydrophobic interactions of key secondary structure elements might be the underlying mechanism for the strong influence of solvent-exposed residues in the stability of p53TD.


  • Organizational Affiliation

    Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, E-46013 Valencia, Spain.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CELLULAR TUMOR ANTIGEN P53
A, B, C, D
31Homo sapiensMutation(s): 3 
UniProt & NIH Common Fund Data Resources
Find proteins for P04637 (Homo sapiens)
Explore P04637 
Go to UniProtKB:  P04637
PHAROS:  P04637
GTEx:  ENSG00000141510 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP04637
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 30 
  • Conformers Submitted: 29 
  • Selection Criteria: TOTAL ENERGY 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-08-28
    Type: Initial release
  • Version 1.1: 2013-05-22
    Changes: Atomic model, Derived calculations, Other, Refinement description, Structure summary, Version format compliance
  • Version 1.2: 2018-04-25
    Changes: Data collection, Database references