5I2U

Crystal structure of a novel Halo-Tolerant Cellulase from Soil Metagenome


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.211 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome

Garg, R.Srivastava, R.Brahma, V.Verma, L.Karthikeyan, S.Sahni, G.

(2016) Sci Rep 6: 39634-39634

  • DOI: https://doi.org/10.1038/srep39634
  • Primary Citation of Related Structures:  
    5I2U

  • PubMed Abstract: 

    Cellulase catalyzes the hydrolysis of β-1,4-linkages of cellulose to produce industrially relevant monomeric subunits. Cellulases find their applications in pulp and paper, laundry, food and feed, textile, brewing industry and in biofuel production. These industries always have great demand for cellulases that can work efficiently even in harsh conditions such as high salt, heat, and acidic environments. While, cellulases with high thermal and acidic stability are already in use, existence of a high halotolerant cellulase is still elusive. Here, we report a novel cellulase Cel5R, obtained from soil metagenome that shows high halotolerance and thermal stability. The biochemical and functional characterization of Cel5R revealed its endoglucanase activity and high halostability. In addition, the crystal structure of Cel5R determined at 2.2 Å resolution reveals a large number of acidic residues on the surface of the protein that contribute to the halophilic nature of this enzyme. Moreover, we demonstrate that the four free and non-conserved cysteine residues (C65, C90, C231 and C273) contributes to the thermal stability of Cel5R by alanine scanning experiments. Thus, the newly identified endoglucanase Cel5R is a promising candidate for various industrial applications.


  • Organizational Affiliation

    CSIR-Institute Of Microbial Technology, Council Of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Cellulase
A, B
332soil metagenomeMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download Ideal Coordinates CCD File 
I [auth A],
J [auth A]
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
GOL
Query on GOL

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth A]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A],
K [auth B],
L [auth B],
M [auth B],
N [auth B]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
H [auth A],
O [auth B]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.211 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 45.766α = 90
b = 88.128β = 90
c = 146.47γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2017-01-18
    Type: Initial release
  • Version 1.1: 2023-11-08
    Changes: Data collection, Database references, Derived calculations, Refinement description