5EMT

Human Histidine Triad Nucleotide Binding Protein 1 (hHint1)-copper complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.165 
  • R-Value Work: 0.147 
  • R-Value Observed: 0.148 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Inhibition by divalent metal ions of human histidine triad nucleotide binding protein1 (hHint1), a regulator of opioid analgesia and neuropathic pain.

Shah, R.Chou, T.F.Maize, K.M.Strom, A.Finzel, B.C.Wagner, C.R.

(2017) Biochem Biophys Res Commun 491: 760-766

  • DOI: https://doi.org/10.1016/j.bbrc.2017.07.111
  • Primary Citation of Related Structures:  
    5EMT

  • PubMed Abstract: 

    Human histidine triad nucleotide binding protein 1 (hHint1) is a purine nucleoside phosphoramidase and adenylate hydrolase that has emerged as a potential therapeutic target for the management of pain. However, the molecular mechanism of Hint1 in the signaling pathway has remained less clear. The role of metal ions in regulating postsynaptic transmission is well known, and the active site of hHint1 contains multiple histidines. Here we have investigated the effect of divalent metal ions (Cd 2+ , Cu 2+ , Mg 2+ , Mn 2+ , Ni 2+ , and Zn 2+ ) on the structural integrity and catalytic activity of hHint1. With the exception of Mg 2+ , all the divalent ions inhibited hHint1, the rank of order was found to be Cu 2+ >Zn 2+ >Cd 2+ ≥Ni 2+ >Mn 2+ based on their IC 50 and k in /K I values. A crystal structure of hHint1 with bound Cu 2+ is described to explain the competitive reversible inactivation of hHint1 by divalent cations. All the metal ions exhibited time- and concentration- dependent inhibition, with the rate of inactivation highly dependent on alterations of the C-terminus. With the exception of Cu 2+ ; restoration of inhibition was observed for all the metal ions after treatment with EDTA. Our studies reveal a loss in secondary structure and aggregation of hHint1 upon incubation with 10-fold excess of copper. Thus, hHint1 appears to be structurally sensitive to irreversible inactivation by copper, which may be of neurotoxicological and pharmacological significance.


  • Organizational Affiliation

    Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Histidine triad nucleotide-binding protein 1
A, B
129Homo sapiensMutation(s): 0 
Gene Names: HINT1HINTPKCI1PRKCNH1
EC: 3
UniProt & NIH Common Fund Data Resources
Find proteins for P49773 (Homo sapiens)
Explore P49773 
Go to UniProtKB:  P49773
PHAROS:  P49773
GTEx:  ENSG00000169567 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP49773
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.165 
  • R-Value Work: 0.147 
  • R-Value Observed: 0.148 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 77.25α = 90
b = 46.22β = 94.62
c = 63.83γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
Aimlessdata scaling
PDB_EXTRACTdata extraction
XDSdata reduction
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-11-09
    Type: Initial release
  • Version 1.1: 2017-08-09
    Changes: Database references, Derived calculations
  • Version 1.2: 2017-09-06
    Changes: Data collection, Database references
  • Version 1.3: 2023-09-27
    Changes: Data collection, Database references, Refinement description