4RXY

Crystal Structure of the Beta Carbonic Anhydrase psCA3 isolated from Pseudomonas aeruginosa


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.192 
  • R-Value Work: 0.165 
  • R-Value Observed: 0.166 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa.

Pinard, M.A.Lotlikar, S.R.Boone, C.D.Vullo, D.Supuran, C.T.Patrauchan, M.A.McKenna, R.

(2015) Bioorg Med Chem 23: 4831-4838

  • DOI: https://doi.org/10.1016/j.bmc.2015.05.029
  • Primary Citation of Related Structures:  
    4RXY

  • PubMed Abstract: 

    Carbonic anhydrases (CAs) are metallo-enzymes that catalyze the reversible hydration of carbon dioxide into bicarbonate and a proton. The β-class CAs (β-CAs) are expressed in prokaryotes, fungi, plants, and more recently have been isolated in some animals. The β-CA class is divided into two subclasses, termed type I and II, defined by pH catalytic activity profile and active site structural configuration. Type I β-CAs display catalytic activity over a broad pH range (6.5-9.0) with the active site zinc tetrahedrally coordinated by three amino acids and a hydroxide/water. In contrast, type II β-CAs are catalytically active only at a pH 8 and higher where they adopt a functional active site configuration like that of type I. However, below pH 8 they are conformationally self-inactivated by the addition of a fourth amino acid coordinating the zinc and thereby displacing the zinc bound solvent. We have determined the structure of psCA3, a type II β-CA, isolated from Pseudomonas aeruginosa (P. aeruginosa) PAO1 at pH 8.3, in its open active state to a resolution of 1.9 Å. The active site zinc is coordinated by Cys42, His98, Cys101 and a water/hydroxide molecule. P. aeruginosa is a multi-drug resistant bacterium and displays intrinsic resistance to most of the currently used antibiotics; therefore, there is a need for new antibacterial targets. Kinetic data confirm that psCA3 belongs to the type II subclass and that sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid are micromolar inhibitors. In vivo studies identified that among six tested inhibitors representing sulfonamides, inorganic anions, and small molecules, acetazolamide has the most significant dose-dependent inhibitory effect on P. aeruginosa growth.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Carbonic anhydrase215Pseudomonas aeruginosa PAO1Mutation(s): 0 
Gene Names: PA4676
EC: 4.2.1.1
UniProt
Find proteins for Q9HVB9 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore Q9HVB9 
Go to UniProtKB:  Q9HVB9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9HVB9
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.192 
  • R-Value Work: 0.165 
  • R-Value Observed: 0.166 
  • Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.241α = 90
b = 77.888β = 90
c = 87.747γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-06-24
    Type: Initial release
  • Version 1.1: 2015-08-12
    Changes: Database references
  • Version 1.2: 2017-11-22
    Changes: Refinement description
  • Version 1.3: 2024-02-28
    Changes: Data collection, Database references, Derived calculations