4QBA

Crystal structure of the effector-binding domain of S. aureus CcpE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.21 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.204 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Metabolic sensor governing bacterial virulence in Staphylococcus aureus.

Ding, Y.Liu, X.Chen, F.Di, H.Xu, B.Zhou, L.Deng, X.Wu, M.Yang, C.G.Lan, L.

(2014) Proc Natl Acad Sci U S A 111: E4981-E4990

  • DOI: https://doi.org/10.1073/pnas.1411077111
  • Primary Citation of Related Structures:  
    4QBA

  • PubMed Abstract: 

    An effective metabolism is essential to all living organisms, including the important human pathogen Staphylococcus aureus. To establish successful infection, S. aureus must scavenge nutrients and coordinate its metabolism for proliferation. Meanwhile, it also must produce an array of virulence factors to interfere with host defenses. However, the ways in which S. aureus ties its metabolic state to its virulence regulation remain largely unknown. Here we show that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, binds to and activates the catabolite control protein E (CcpE) of S. aureus. Using structural and site-directed mutagenesis studies, we demonstrate that two arginine residues (Arg145 and Arg256) within the putative inducer-binding cavity of CcpE are important for its allosteric activation by citrate. Microarray analysis reveals that CcpE tunes the expression of 126 genes that comprise about 4.7% of the S. aureus genome. Intriguingly, although CcpE is a major positive regulator of the TCA-cycle activity, its regulon consists predominantly of genes involved in the pathogenesis of S. aureus. Moreover, inactivation of CcpE results in increased staphyloxanthin production, improved ability to acquire iron, increased resistance to whole-blood-mediated killing, and enhanced bacterial virulence in a mouse model of systemic infection. This study reveals CcpE as an important metabolic sensor that allows S. aureus to sense and adjust its metabolic state and subsequently to coordinate the expression of virulence factors and bacterial virulence.


  • Organizational Affiliation

    Department of Molecular Pharmacology and.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
LysR family regulatory protein
A, B
204Staphylococcus aureus subsp. aureus MSSA476Mutation(s): 0 
Gene Names: SAS0637
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A, B
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.21 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.204 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 73.605α = 90
b = 77.182β = 90
c = 93.968γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
SHELXSphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-11-19
    Type: Initial release
  • Version 1.1: 2022-08-24
    Changes: Database references, Derived calculations