3A3N

Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the two C-terminal residues


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.231 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.173 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin

Tanaka, S.Matsumura, H.Koga, Y.Takano, K.Kanaya, S.

(2009) J Mol Biol 394: 306-319

  • DOI: https://doi.org/10.1016/j.jmb.2009.09.028
  • Primary Citation of Related Structures:  
    3A3N, 3A3O, 3A3P

  • PubMed Abstract: 

    Tk-subtilisin requires Ca(2+) for folding. This folding is accelerated by the chaperone function of its propeptide (Tkpro). Several Tkpro and Tk-subtilisin derivatives were constructed to examine whether the interactions between the C-terminal extended region of Tkpro and Tk-subtilisin and Glu61/Asp63- and Glu201-mediated hydrogen bonds at the domain interface are important for the chaperone function of Tkpro. The Tkpro derivatives with a series of C-terminal truncations and double mutations at Glu61 and Asp63 exhibited weaker chaperone functions than Tkpro for SA-subtilisin (active-site mutant of Tk-subtilisin). Good correlation was observed between their chaperone functions and binding abilities to the folded SA-subtilisin protein. These results suggest that the C-terminal extended region, Glu61, and Asp63 of Tkpro are not critical for folding of Tk-subtilisin but accelerate it by binding to a folding intermediate of Tk-subtilisin with a native-like structure at their binding sites. In contrast, Tkpro exhibited little chaperone function for E201A/SA-subtilisin. It could bind to the folded E201A/SA-subtilisin protein with a lower association constant than that for SA-subtilisin. These results suggest a loop of Tkpro, which interacts with Glu201 of Tk-subtilisin through hydrogen bonds and is required for folding of Tk-subtilisin by binding to a folding intermediate of Tk-subtilisin with a nonnative structure. Because this loop is fairly hydrophobic and tightly packs to the surface parallel helices of the central alphabetaalpha substructure of Tk-subtilisin, binding of this loop to Glu201 may induce association of these two helices and thereby formation of the alphabetaalpha substructure. We propose that Glu201-mediated interactions are critical for initiation of Tkpro-catalyzed folding of Tk-subtilisin.


  • Organizational Affiliation

    Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Tk-subtilisin329Thermococcus kodakarensisMutation(s): 1 
EC: 3.4.21
UniProt
Find proteins for P58502 (Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1))
Explore P58502 
Go to UniProtKB:  P58502
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP58502
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Tk-subtilisin67Thermococcus kodakarensisMutation(s): 0 
UniProt
Find proteins for P58502 (Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1))
Explore P58502 
Go to UniProtKB:  P58502
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP58502
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
J [auth A],
K [auth B],
L [auth B]
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
CA
Query on CA

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth A]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A],
I [auth A]
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.231 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.173 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.732α = 90
b = 68.468β = 90
c = 73.704γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-08-18
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2014-01-22
    Changes: Database references
  • Version 1.3: 2021-11-10
    Changes: Database references, Derived calculations
  • Version 1.4: 2023-11-01
    Changes: Data collection, Refinement description