2V09

SENS161-164DSSN mutant of Bacillus subtilis Oxalate Decarboxylase OxdC


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.173 
  • R-Value Work: 0.141 
  • R-Value Observed: 0.143 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Oxalate Decarboxylase and Oxalate Oxidase Activities Can be Interchanged with a Specificity Switch of Up to 282 000 by Mutating an Active Site Lid.

Burrell, M.R.Just, V.J.Bowater, L.Fairhurst, S.A.Requena, L.Lawson, D.M.Bornemann, S.

(2007) Biochemistry 46: 12327

  • DOI: https://doi.org/10.1021/bi700947s
  • Primary Citation of Related Structures:  
    2V09

  • PubMed Abstract: 

    Oxalate decarboxylases and oxalate oxidases are members of the cupin superfamily of proteins that have many common features: a manganese ion with a common ligand set, the substrate oxalate, and dioxygen (as either a unique cofactor or a substrate). We have hypothesized that these enzymes share common catalytic steps that diverge when a carboxylate radical intermediate becomes protonated. The Bacillus subtilis decarboxylase has two manganese binding sites, and we proposed that Glu162 on a flexible lid is the site 1 general acid. We now demonstrate that a decarboxylase can be converted into an oxidase by mutating amino acids of the lid that include Glu162 with specificity switches of 282,000 (SEN161-3DAS), 275,000 (SENS161-4DSSN), and 225,000 (SENS161-4DASN). The structure of the SENS161-4DSSN mutant showed that site 2 was not affected. The requirement for substitutions other than of Glu162 was, at least in part, due to the need to decrease the Km for dioxygen for the oxidase reaction. Reversion of decarboxylase activity could be achieved by reintroducing Glu162 to the SENS161-4DASN mutant to give a relative specificity switch of 25,600. This provides compelling evidence for the crucial role of Glu162 in the decarboxylase reaction consistent with it being the general acid, for the role of the lid in controlling the Km for dioxygen, and for site 1 being the sole catalytically active site. We also report the trapping of carboxylate radicals produced during turnover of the mutant with the highest oxidase activity. Such radicals were also observed with the wild-type decarboxylase.


  • Organizational Affiliation

    Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
OXALATE DECARBOXYLASE OXDC385Bacillus subtilisMutation(s): 4 
EC: 4.1.1.2
UniProt
Find proteins for O34714 (Bacillus subtilis (strain 168))
Explore O34714 
Go to UniProtKB:  O34714
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO34714
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.173 
  • R-Value Work: 0.141 
  • R-Value Observed: 0.143 
  • Space Group: H 3 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 154.602α = 90
b = 154.602β = 90
c = 122.957γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
REFMACphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-10-30
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description