2IC1

Crystal Structure of Human Cysteine Dioxygenase in Complex with Substrate Cysteine


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.181 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

An Insight into the Mechanism of Human Cysteine Dioxygenase: KEY ROLES OF THE THIOETHER-BONDED TYROSINE-CYSTEINE COFACTOR.

Ye, S.Wu, X.Wei, L.Tang, D.Sun, P.Bartlam, M.Rao, Z.

(2007) J Biol Chem 282: 3391-3402

  • DOI: https://doi.org/10.1074/jbc.M609337200
  • Primary Citation of Related Structures:  
    2IC1

  • PubMed Abstract: 

    Cysteine dioxygenase is a non-heme mononuclear iron metalloenzyme that catalyzes the oxidation of cysteine to cysteine sulfinic acid with addition of molecular dioxygen. This irreversible oxidative catabolism of cysteine initiates several important metabolic pathways related to diverse sulfurate compounds. Cysteine dioxygenase is therefore very important for maintaining the proper hepatic concentration of intracellular free cysteine. Mechanisms for mouse and rat cysteine dioxygenases have recently been reported based on their crystal structures in the absence of substrates, although there is still a lack of direct evidence. Here we report the first crystal structure of human cysteine dioxygenase in complex with its substrate L-cysteine to 2.7A, together with enzymatic activity and metal content assays of several single point mutants. Our results provide an insight into a new mechanism of cysteine thiol dioxygenation catalyzed by cysteine dioxygenase, which is tightly associated with a thioether-bonded tyrosine-cysteine cofactor involving Tyr-157 and Cys-93. This cross-linked protein-derived cofactor plays several key roles different from those in galactose oxidase. This report provides a new potential target for therapy of diseases related to human cysteine dioxygenase, including neurodegenerative and autoimmune diseases.


  • Organizational Affiliation

    Tsinghua-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Cysteine dioxygenase type 1205Homo sapiensMutation(s): 0 
Gene Names: CDO1
EC: 1.13.11.20
UniProt & NIH Common Fund Data Resources
Find proteins for Q16878 (Homo sapiens)
Explore Q16878 
Go to UniProtKB:  Q16878
PHAROS:  Q16878
GTEx:  ENSG00000129596 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ16878
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.181 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 131.1α = 90
b = 131.1β = 90
c = 34.3γ = 120
Software Package:
Software NamePurpose
HKL-2000data collection
CNSrefinement
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-12-05
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-30
    Changes: Data collection, Database references, Derived calculations, Refinement description