2VN4

Glycoside Hydrolase Family 15 Glucoamylase from Hypocrea jecorina


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.182 
  • R-Value Work: 0.154 
  • R-Value Observed: 0.156 

wwPDB Validation   3D Report Full Report

Currently 2VN4 does not have a validation slider image.


This is version 2.1 of the entry. See complete history


Literature

Three-Dimensional Structure of an Intact Glycoside Hydrolase Family 15 Glucoamylase from Hypocrea Jecorina.

Bott, R.Saldajeno, M.Cuevas, W.Ward, D.Scheffers, M.Aehle, W.Karkehabadi, S.Sandgren, M.Hansson, H.

(2008) Biochemistry 47: 5746

  • DOI: https://doi.org/10.1021/bi702413k
  • Primary Citation of Related Structures:  
    2VN4, 2VN7

  • PubMed Abstract: 

    The three-dimensional structure of a complete Hypocrea jecorina glucoamylase has been determined at 1.8 A resolution. The presented structure model includes the catalytic and starch binding domains and traces the course of the 37-residue linker segment. While the structures of other fungal and yeast glucoamylase catalytic and starch binding domains have been determined separately, this is the first intact structure that allows visualization of the juxtaposition of the starch binding domain relative to the catalytic domain. The detailed interactions we see between the catalytic and starch binding domains are confirmed in a second independent structure determination of the enzyme in a second crystal form. This second structure model exhibits an identical conformation compared to the first structure model, which suggests that the H. jecorina glucoamylase structure we report is independent of crystal lattice contact restraints and represents the three-dimensional structure found in solution. The proposed starch binding regions for the starch binding domain are aligned with the catalytic domain in the three-dimensional structure in a manner that supports the hypothesis that the starch binding domain serves to target the glucoamylase at sites where the starch granular matrix is disrupted and where the enzyme might most effectively function.


  • Organizational Affiliation

    Genencor-A Danisco Division, 925 Page Mill Road, Palo Alto, California 94304, USA. rick.bott@danisco.com


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GLUCOAMYLASE599Trichoderma reeseiMutation(s): 0 
EC: 3.2.1.3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
B
2N/AN-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download Ideal Coordinates CCD File 
K [auth A]2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
BTB
Query on BTB

Download Ideal Coordinates CCD File 
L [auth A],
M [auth A]
2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL
C8 H19 N O5
OWMVSZAMULFTJU-UHFFFAOYSA-N
MAN
Query on MAN

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth A]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A],
I [auth A],
J [auth A]
alpha-D-mannopyranose
C6 H12 O6
WQZGKKKJIJFFOK-PQMKYFCFSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.182 
  • R-Value Work: 0.154 
  • R-Value Observed: 0.156 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.185α = 90
b = 99.232β = 90
c = 121.24γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report

Currently 2VN4 does not have a validation slider image.



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-05-20
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-01-17
    Changes: Data collection
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2023-12-13
    Changes: Data collection, Database references, Refinement description, Structure summary