2N63

Structure of C4VG16KRKP


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding.

Datta, A.Kundu, P.Bhunia, A.

(2016) J Colloid Interface Sci 461: 335-345

  • DOI: https://doi.org/10.1016/j.jcis.2015.09.036
  • Primary Citation of Related Structures:  
    2N63, 2N65

  • PubMed Abstract: 

    The remarkable rise in multi-drug resistant Gram-negative bacterial pathogens is a major concern to the well being of humans as well as susceptible plants. In recent years, diseases associated with inflammation and septicemia have already become a global health issue. Therefore, there is a rising demand for the development of novel "super" antibiotics. In this context, antimicrobial peptides offer an attractive, alternate therapeutic solution to conventional antibiotics. Microbroth dilution assay was performed to investigate the antimicrobial activities of the two designed peptides against Gram negative bacterial pathogens. Fluorescence studies including NPN dye uptake assay, Calcein entrapped vesicle leakage assay, quenching and anisotropy in presence of lipopolysaccharide (LPS) were performed to elucidate binding interactions and enhanced membrane permeabilisation. Hemolytic assay and endotoxin/LPS neutralisation assay were performed to study the hemolytic effects and LPS scavenging abilities of the peptides. High resolution NMR studies were performed to obtain insights into LPS-peptide interaction at the molecular level. Here, we report more potent analogues of previously designed peptide VG16KRKP, designed through dimerization via Cys-Cys disulphide linkage and N-terminal lipidation. Similar to the parent peptide, VG16KRKP, the modified analogue peptides are non hemolytic in nature, but possessed, 2-10-fold increase in antibacterial activities against E. coli, human pathogen Pseudomonas aeruginosa and the devastating plant pathogen, Xanthomonas campestris pv. campestris as well as membrane permeabilization, and endotoxin neutralization. LPS bound solution structure of both analogues, as determined by NMR spectroscopy, reveal that the conserved hydrophobic triad motif, formed by Trp5, Leu11 and Phe12 is compactly organized and stabilized either by the acyl chain or disulphide bond. This structural constraint accounts for the separation of polar face from the hydrophobic face of the peptides. Our novel peptides designed through Cys-Cys dimerization and N-terminal lipidation, will serve as a template to develop more potent antimicrobials in future, to control plant and human diseases.


  • Organizational Affiliation

    Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
antimicrobial peptide C4VG16KRKP16synthetic constructMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
LEA
Query on LEA

Download Ideal Coordinates CCD File 
B [auth A]PENTANOIC ACID
C5 H10 O2
NQPDZGIKBAWPEJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-03-23
    Type: Initial release
  • Version 2.0: 2024-01-24
    Changes: Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Polymer sequence, Source and taxonomy, Structure summary