1ZX2

Crystal Structure of Yeast UBP3-associated Protein BRE5


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural basis for interaction between the Ubp3 deubiquitinating enzyme and its Bre5 cofactor

Li, K.Zhao, K.Ossareh-Nazari, B.Da, G.Dargemont, C.Marmorstein, R.

(2005) J Biol Chem 280: 29176-29185

  • DOI: https://doi.org/10.1074/jbc.M502975200
  • Primary Citation of Related Structures:  
    1ZX2

  • PubMed Abstract: 

    The Bre5 protein is a cofactor for the deubiquitinating enzyme Ubp3, and it contains a nuclear transfer factor 2 (NTF2)-like protein recognition module that is essential for Ubp3 activity. In this study, we report the x-ray crystal structure of the Bre5 NTF2-like domain and show that it forms a homodimeric structure that is similar to other NTF2-like domains, except for the presence of an intermolecular disulfide bond in the crystals. Sedimentation equilibrium studies reveal that under non-reducing conditions, the Bre5 NTF2-like domain is exclusively dimeric, whereas a disulfide bond-deficient mutant undergoes a monomer-dimer equilibrium with a dissociation constant in the midnanomolar range, suggesting that dimer formation and possibly also disulfide bond formation may modulate Bre5 function in vivo. Using deletion analysis, we also identify a novel N-terminal domain of Ubp3 that is necessary and sufficient for interaction with Bre5 and use isothermal titration calorimetry to show that Bre5 and Ubp3 form a 2:1 complex, in contrast to other reported NTF2-like domain/protein interactions that form 1:1 complexes. Finally, we employ structure-based mutagenesis to map the Ubp3 binding surface of Bre5 to a region near the Bre5 dimer interface and show that this binding surface of Bre5 is important for Ubp3 function in vivo. Together, these studies provide novel insights into protein recognition by NTF2-like domains and provide a molecular scaffold for understanding how Ubp3 function is regulated by Bre5 cofactor binding.


  • Organizational Affiliation

    The Wistar Institute, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
UBP3-associated protein BRE5
A, B
147Saccharomyces cerevisiaeMutation(s): 0 
Gene Names: BRE5
UniProt
Find proteins for P53741 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P53741 
Go to UniProtKB:  P53741
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP53741
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.190 
  • Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 90.909α = 90
b = 90.909β = 90
c = 194.896γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-06-21
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Version format compliance