1QIL

INACTIVE MUTANT TOXIC SHOCK SYNDROME TOXIN-1 AT 2.5 A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of a biologically inactive mutant of toxic shock syndrome toxin-1 at 2.5 A resolution.

Papageorgiou, A.C.Quinn, C.P.Beer, D.Brehm, R.D.Tranter, H.S.Bonventre, P.F.Acharya, K.R.

(1996) Protein Sci 5: 1737-1741

  • DOI: https://doi.org/10.1002/pro.5560050826
  • Primary Citation of Related Structures:  
    1QIL

  • PubMed Abstract: 

    Toxic shock syndrome toxin-1 (TSST-1) is one of a family of staphylococcal exotoxins recognized as microbial superantigens. The toxin plays a dominant role in the genesis of toxic shock in humans through a massive activation of the immune system. This potentially lethal illness occurs as a result of the interaction of TSST-1 with a significant proportion of the T-cell repertoire. TSST-1, like other superantigens, can bind directly to class II major histocompatibility (MHC class II) molecules prior to its interaction with entire families of V beta chains of the T-cell receptor (TCR). The three-dimensional structure of a mutant (His-135-Ala) TSST-1 was compared with the structure of the native (wild-type) TSST-1 at 2.5 A resolution. The replacement of His 135 of TSST-1 with an Ala residue results in the loss of T-cell mitogenicity and toxicity in experimental animals. This residue, postulated to be directly involved in the toxin-TCR interactions, is located on the major helix alpha 2, which forms the backbone of the molecule and is exposed to the solvent. In the molecular structure of the mutant toxin, the helix alpha 2 remains unaltered, but the His to Ala modification causes perturbations on the neighboring helix alpha 1 by disrupting helix-helix interactions. Thus, the effects on TCR binding of the His 135 residue could actually be mediated, wholly or in part, by the alpha 1 helix.


  • Organizational Affiliation

    School of Biology and Biochemistry, University of Bath, Claverton Down, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TOXIC SHOCK SYNDROME TOXIN-1
A, B, C
194Staphylococcus aureusMutation(s): 0 
UniProt
Find proteins for P06886 (Staphylococcus aureus)
Explore P06886 
Go to UniProtKB:  P06886
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06886
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 109.03α = 90
b = 177.45β = 90
c = 97.51γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-08-12
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Other