1D8D

CO-CRYSTAL STRUCTURE OF RAT PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A K-RAS4B PEPTIDE SUBSTRATE AND FPP ANALOG AT 2.0A RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.164 
  • R-Value Observed: 0.166 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures.

Long, S.B.Casey, P.J.Beese, L.S.

(2000) Structure 8: 209-222

  • DOI: https://doi.org/10.1016/s0969-2126(00)00096-4
  • Primary Citation of Related Structures:  
    1D8D, 1D8E

  • PubMed Abstract: 

    The protein farnesyltransferase (FTase) catalyzes addition of the hydrophobic farnesyl isoprenoid to a cysteine residue fourth from the C terminus of several protein acceptors that are essential for cellular signal transduction such as Ras and Rho. This addition is necessary for the biological function of the modified proteins. The majority of Ras-related human cancers are associated with oncogenic variants of K-RasB, which is the highest affinity natural substrate of FTase. Inhibition of FTase causes regression of Ras-mediated tumors in animal models. We present four ternary complexes of rat FTase co-crystallized with farnesyl diphosphate analogs and K-Ras4B peptide substrates. The Ca(1)a(2)X portion of the peptide substrate binds in an extended conformation in the hydrophobic cavity of FTase and coordinates the active site zinc ion. These complexes offer the first view of the polybasic region of the K-Ras4B peptide substrate, which confers the major enhancement of affinity of this substrate. The polybasic region forms a type I beta turn and binds along the rim of the hydrophobic cavity. Removal of the catalytically essential zinc ion results in a dramatically different peptide conformation in which the Ca(1)a(2)X motif adopts a beta turn. A manganese ion binds to the diphosphate mimic of the farnesyl diphosphate analog. These ternary complexes provide new insight into the molecular basis of peptide substrate specificity, and further define the roles of zinc and magnesium in the prenyltransferase reaction. Zinc is essential for productive Ca(1)a(2)X peptide binding, suggesting that the beta-turn conformation identified in previous nuclear magnetic resonance (NMR) studies reflects a state in which the cysteine is not coordinated to the zinc ion. The structural information presented here should facilitate structure-based design and optimization of inhibitors of Ca(1)a(2)X protein prenyltransferases.


  • Organizational Affiliation

    Department of Biochemistry, PO Box 3711, Duke University Medical Center, Durham, 27710, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
farnesyltransferase (alpha subunit)377Rattus norvegicusMutation(s): 0 
EC: 2.5.1.21
UniProt
Find proteins for Q04631 (Rattus norvegicus)
Explore Q04631 
Go to UniProtKB:  Q04631
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ04631
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
farnesyltransferase (beta subunit)437Rattus norvegicusMutation(s): 0 
EC: 2.5.1.21
UniProt
Find proteins for Q02293 (Rattus norvegicus)
Explore Q02293 
Go to UniProtKB:  Q02293
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ02293
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
K-RAS4B PEPTIDE SUBSTRATEC [auth P]11N/AMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P01116 (Homo sapiens)
Explore P01116 
Go to UniProtKB:  P01116
PHAROS:  P01116
GTEx:  ENSG00000133703 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01116
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.164 
  • R-Value Observed: 0.166 
  • Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 170.919α = 90
b = 170.919β = 90
c = 69.284γ = 120
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-02-09
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-03-13
    Changes: Source and taxonomy, Structure summary