SH3 domain-containing kinase-binding protein 1 - Q96B97 (SH3K1_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Can self-associate and form homotetramers. Interacts with CD2, F-actin capping protein, PIK3R3, GRB2, EGFR, MET, BLNK, MAP3K4, PDCD6IP, SPRY2, ARHGAP17, ARHGAP27, MAGI2, CRK, BCAR1, SOS1, ASAP1, ARAP3, HIP1R, SYNJ2, INPP5D and STAP1. Interacts with CBL and CBLB, but does not interact with CBLC. Two molecules of SH3KBP1 seem to bind through their respective SH3 1 domain to one molecule of CBLB. The interaction with CBL or CBLB and EGFR is increased upon EGF stimulation. The interaction with CBL is attenuated by PDCD6IP. Interacts through its proline-rich region with the SH3 domain of endophilins SH3GL1, SH3GL2 and SH3GL3. The SH3KBP1-endophilin complex seems to associate with a complex containing the phosphorylated receptor (EGFR or MET) and phosphorylated CBL. Probably associates with ASAP1 and phosphorylated EGFR. Probably part of a complex consisting of at least SH3KBP1, ASAP1 and ARAP3. Interacts with focal adhesion kinases PTK2/FAK1 AND PTK2B/PYK2, probably as a dimer. Interacts with DAB2 and probably associates with chathrin through its interaction with DAB2. Part of a complex consisting of SH3KBP1, DAB2, and clathrin heavy chain. DAB2 and clathrin dissociate from SH3KBP1 following growth factor treatment, enabling interaction with CBL. Interacts with DDN and probably associates with MAGI2 through its interaction with DDN. Interacts with the SH3 domains of SRC tyrosine-protein kinases SRC, LCK, LYN, FGR, FYN and HCK. Interacts with TRADD, BIRC2, TRAF1, TRAF2 and TNFR1, and the association with a TNFR1-associated complex upon stimulation with TNF-alpha seems to be mediated by SRC. Interacts (via SH3 domains) with SHKBP1 (via PXXXPR motifs) (By similarity). Interaction with CBL is abolished in the presence of SHKBP1 (By similarity). Interacts (via SH3 domains) with ZFP36 (via extreme C-terminal region) (PubMed:20221403). Interacts with MAP3K4; this interaction enhances the association with ZFP36 (PubMed:20221403). UniProt
  • Isoforms: 3 , currently showing only the 'canonical' sequence.
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.