Acetylxylan esterase - Q09LX1 (AXE2_GEOSE)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q09LX1: 8
Acetylxylan esterase involved in the degradation of xylan, a major structural heterogeneous polysaccharide found in plant biomass representing the second most abundant polysaccharide in the biosphere, after cellulose. Cleaves acetyl side groups from the xylose backbone units of the hemicellulolytic polymer xylan and xylo-oligosaccharides. Hydrolyzes about 20%-30% of the available acetyl groups on fully acetylated birch wood xylan. Completely deacetylates xylobiose peracetate (fully acetylated), and is active on both the alpha- and beta-forms of the sugar. Also hydrolyzes fully acetylated methyl-beta-D-xylopyranoside and methyl-beta-D-glucopyranoside, and the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. UniProt
Catalytic Activity
Deacetylation of xylans and xylo-oligosaccharides. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Homooctamer, presenting a unique donut-shaped quaternary structure built of two staggered tetrameric rings. The eight active sites are organized in four closely situated pairs, which face the relatively wide internal cavity. UniProt
  • Organism: Bacillus stearothermophilus
  • Length:
  • UniProt
  • Other Gene names: axe2
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.