Fe(2+) transporter FeoB - P33650 (FEOB_ECOLI)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P33650: 8
 
Function
Transporter of a GTP-driven Fe(2+) uptake system, probably couples GTP-binding to channel opening and Fe(2+) uptake (PubMed:12446835, PubMed:19629046). A guanine nucleotide-binding protein (G proteins) in which the guanine nucleotide binding site alternates between an active, GTP-bound state and an inactive, GDP-bound state. This protein has fast intrinsic GDP release, mediated by the G5 loop (about residues 149-158). Presumably GTP hydrolysis leads to conformational changes and channel closing (PubMed:19629046). A GDP release mechanism involving a conformational change of the G5 loop (and thus the removal of the nucleotide-binding and stabilizing interactions) would significantly reduce the affinity for GDP, and conceivably be sufficient for catalysing nucleotide release (PubMed:25374115). UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
The isolated N-terminal domain (residues 1-274) forms trimers (PubMed:19629046, Ref.10,PubMed:25374115). UniProt
Domain
Contains a guanine-nucleotide-specific nucleotide-binding site (about residues 1-276) that shows slow GTP hydrolysis (PubMed:12446835, PubMed:23104801). When a non-hydrolyzable GTP analog binds to the trimeric N-terminal domain, it induces a structural shift which opens a pore (PubMed:19629046). UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.