2RIQ

Crystal Structure of the Third Zinc-binding domain of human PARP-1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.181 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A Third Zinc-binding Domain of Human Poly(ADP-ribose) Polymerase-1 Coordinates DNA-dependent Enzyme Activation.

Langelier, M.F.Servent, K.M.Rogers, E.E.Pascal, J.M.

(2008) J Biol Chem 283: 4105-4114

  • DOI: https://doi.org/10.1074/jbc.M708558200
  • Primary Citation of Related Structures:  
    2RIQ

  • PubMed Abstract: 

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a chromatin-associated enzyme with multiple cellular functions, including DNA repair, transcriptional regulation, and cell signaling. PARP-1 has a modular architecture with six independent domains comprising the 113-kDa polypeptide. Two zinc finger domains at the N terminus of PARP-1 bind to DNA and thereby activate the catalytic domain situated at the C terminus of the enzyme. The tight coupling of DNA binding and catalytic activities is critical to the cellular regulation of PARP-1 function; however, the mechanism for coordinating these activities remains an unsolved problem. Here, we demonstrate using spectroscopic and crystallographic analysis that human PARP-1 has a third zinc-binding domain. Biochemical mutagenesis and deletion analysis indicate that this region mediates interdomain contacts important for DNA-dependent enzyme activation. The crystal structure of the third zinc-binding domain reveals a zinc ribbon fold and suggests conserved residues that could form interdomain contacts. The new zinc-binding domain self-associates in the crystal lattice to form a homodimer with a head-totail arrangement. The structure of the homodimer provides a scaffold for assembling the activated state of PARP-1 and suggests a mechanism for coupling the DNA binding and catalytic functions of PARP-1.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Poly [ADP-ribose] polymerase 1160Homo sapiensMutation(s): 0 
Gene Names: PARP1ADPRTPPOL
EC: 2.4.2.30
UniProt & NIH Common Fund Data Resources
Find proteins for P09874 (Homo sapiens)
Explore P09874 
Go to UniProtKB:  P09874
PHAROS:  P09874
GTEx:  ENSG00000143799 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP09874
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.181 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.841α = 90
b = 85.652β = 90
c = 67.758γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
CBASSdata collection
HKL-2000data reduction
HKL-2000data scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-01-08
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2024-02-21
    Changes: Data collection, Database references, Derived calculations