1UVX

Heme-ligand tunneling on group I truncated hemoglobins


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.45 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.216 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Heme-Ligand Tunneling in Group I Truncated Hemoglobins

Milani, M.Pesce, A.Ouellet, Y.Dewilde, S.Friedman, J.Ascenzi, P.Guertin, M.Bolognesi, M.

(2004) J Biol Chem 279: 21520

  • DOI: https://doi.org/10.1074/jbc.M401320200
  • Primary Citation of Related Structures:  
    1S56, 1S61, 1UVX, 1UVY

  • PubMed Abstract: 

    Truncated hemoglobins (trHbs) are small hemoproteins forming a separate cluster within the hemoglobin superfamily; their functional roles in bacteria, plants, and unicellular eukaryotes are marginally understood. Crystallographic investigations have shown that the trHb fold (a two-on-two alpha-helical sandwich related to the globin fold) hosts a protein matrix tunnel system offering a potential path for ligand diffusion to the heme distal site. The tunnel topology is conserved in group I trHbs, although with modulation of its size/structure. Here, we present a crystallographic investigation on trHbs from Mycobacterium tuberculosis, Chlamydomonas eugametos, and Paramecium caudatum, showing that treatment of trHb crystals under xenon pressure leads to binding of xenon atoms at specific (conserved) sites along the protein matrix tunnel. The crystallographic results are in keeping with data from molecular dynamics simulations, where a dioxygen molecule is left free to diffuse within the protein matrix. Modulation of xenon binding over four main sites is related to the structural properties of the tunnel system in the three trHbs and may be connected to their functional roles. In a parallel crystallographic investigation on M. tuberculosis trHbN, we show that butyl isocyanide also binds within the apolar tunnel, in excellent agreement with concepts derived from the xenon binding experiments. These results, together with recent data on atypical CO rebinding kinetics to group I trHbs, underline the potential role of the tunnel system in supporting diffusion, but also accumulation in multiple copies, of low polarity ligands/molecules within group I trHbs.


  • Organizational Affiliation

    Giannina Gaslini Institute, Largo G. Gaslini, 5. 16147 Genoa, Italy.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GLOBIN LI637121Chlamydomonas moewusiiMutation(s): 0 
UniProt
Find proteins for Q08753 (Chlamydomonas moewusii)
Explore Q08753 
Go to UniProtKB:  Q08753
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ08753
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.45 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.216 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 34.499α = 90
b = 52.932β = 90
c = 66.993γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
EPMRphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-03-18
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Other, Refinement description