1D3R

CRYSTAL STRUCTURE OF TRIPLEX DNA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.210 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structure of a triple helical DNA with a triplex-duplex junction.

Rhee, S.Han, Z.Liu, K.Miles, H.T.Davies, D.R.

(1999) Biochemistry 38: 16810-16815

  • DOI: https://doi.org/10.1021/bi991811m
  • Primary Citation of Related Structures:  
    1D3R

  • PubMed Abstract: 

    Extended purine sequences on a DNA strand can lead to the formation of triplex DNA in which the third strand runs parallel to the purine strand. Triplex DNA structures have been proposed to play a role in gene expression and recombination and also have potential application as antisense inhibitors of gene expression. Triplex structures have been studied in solution by NMR, but have hitherto resisted attempts at crystallization. Here, we report a novel design of DNA sequences, which allows the first crystallographic study of DNA segment containing triplexes and its junction with a duplex. In the 1.8 A resolution structure, the sugar-phosphate backbone of the third strand is parallel to the purine-rich strand. The bases of the third strand associate with the Watson and Crick duplex via Hoogsteen-type interactions, resulting in three consecutive C(+).GC, BU.ABU (BU = 5-bromouracil), and C(+).GC triplets. The overall conformation of the DNA triplex has some similarity to the B-form, but is distinct from both A- and B-forms. There are large changes in the phosphate backbone torsion angles (particularly gamma) of the purine strand, probably due to the electrostatic interactions between the phosphate groups and the protonated cytosine. These changes narrow the minor groove width of the purine-Hoogsteen strands and may represent sequence-specific structural variations of the DNA triplex.


  • Organizational Affiliation

    Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA (5'-D(*CP*(BRU)P*CP*CP*(BRU)P*CP*CP*GP*CP*GP*CP*G)-3')
A, C
12N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
DNA (5'-D(*CP*GP*CP*GP*CP*GP*GP*AP*G)-3')
B, D
9N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.210 
  • Space Group: P 42
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.8α = 90
b = 53.8β = 90
c = 43.1γ = 90
Software Package:
Software NamePurpose
SHELXmodel building
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
SHELXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-01-01
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2024-02-07
    Changes: Data collection, Database references, Derived calculations