2NS4

Solution structure of a Beta-Hairpin Peptidomimetic Inhibitor of the BIV Tat-Tar Interaction


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations, target function 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structure-Guided Peptidomimetic Design Leads to Nanomolar beta-Hairpin Inhibitors of the Tat-TAR Interaction of Bovine Immunodeficiency Virus

Athanassiou, Z.Patora, K.Dias, R.L.A.Moehle, K.Robinson, J.A.Varani, G.

(2007) Biochemistry 46: 741-751

  • DOI: https://doi.org/10.1021/bi0619371
  • Primary Citation of Related Structures:  
    2NS4

  • PubMed Abstract: 

    The Tat protein of immunodeficiency viruses is the main activator of viral gene expression. By binding specifically to its cognate site, the transactivator response element (TAR), Tat mediates a strong induction of the production of all viral transcripts. In seeking a new chemical solution to inhibiting viral protein-RNA interactions, we recently identified inhibitors of the viral Tat protein from the bovine immunodeficiency virus (BIV) using conformationally constrained beta-hairpin peptidomimetics. We identified a micromolar ligand, called BIV2, and the structure of its complex with BIV TAR was determined by NMR. In this work, we demonstrate that this chemistry can rapidly yield highly potent and selective ligands. On the basis of the structure, we synthesized and assayed libraries of mutant peptidomimetics. Remarkably, we were able in just a few rounds of design and synthesis to discover nanomolar inhibitors of the Tat-TAR interaction in BIV that selectively bind the BIV TAR RNA compared to RNA structures as closely related as the HIV-1 TAR or RRE elements. The molecular recognition principles developed in this study have been exploited in discovering related peptidomimetic inhibitors of the Tat-TAR interaction in HIV-1.


  • Organizational Affiliation

    Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
L-22 CYCLIC PEPTIDE14N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations, target function 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-01-30
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-16
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2023-12-27
    Changes: Data collection